Приложение 1
к основной образовательной программе СОО
МБОУ Развилковской средней общеобразовательной школы
с углубленным изучением отдельных предметов
РАССМОТРЕНА И РЕКОМЕНДОВАНА УТВЕРЖДЕНА
К УТВЕРЖДЕНИЮ приказом по школе
на заседании от 31.08.2023 № -о
Методического совета Директор
МБОУ Развилковской средней МБОУ Развилковской средней
общеобразовательной школы общеобразовательной школы
с углубленным изучением с углубленным изучением
отдельных предметов отдельных предметов
(протокол от 31.08.2023 № 1)
____________Т.И. Бондаренко
М.П.
РАБОЧАЯ ПРОГРАММА
СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ
(ID )
Учебного предмета
«МАТЕМАТИКА. УГЛУБЛЕННЫЙ УРОВЕНЬ»
10-11 классы
(Срок реализации – 2 года)
Авторы составители-
Учителя математики
высшей квалификационной категории
Бондаренко Татьяна Ивановна
Полпудникова Марина Геннадиевна
п. Развилка 2023
ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА»
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Программа по математике углублённого уровня для обучающихся на уровне среднего общего образования разработана на основе ФГОС СОО с учётом современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования. Реализация программы по математике обеспечивает овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития личности обучающихся.
В программе по математике учтены идеи и положения «Концепции развития математического образования в Российской Федерации». В соответствии с названием концепции математическое образование должно, в частности, решать задачу обеспечения необходимого стране числа обучающихся, математическая подготовка которых достаточна для продолжения образования по различным направлениям, включая преподавание математики, математические исследования, работу в сфере информационных технологий и других, а также обеспечения для каждого обучающегося возможности достижения математической подготовки в соответствии с необходимым ему уровнем. Именно на решение этих задач нацелена программа по математике углублённого уровня.
В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без хорошей математической подготовки. Это обусловлено тем, что в наши дни растёт число специальностей, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг обучающихся, для которых математика становится значимым предметом, фундаментом образования, существенно расширяется. В него входят не только обучающиеся, планирующие заниматься творческой и исследовательской работой в области математики, информатики, физики, экономики и в других областях, но и те, кому математика нужна для использования в профессиях, не связанных непосредственно с ней.
Прикладная значимость математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения, функциональные зависимости и категории неопределённости, от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Во многих сферах профессиональной деятельности требуются умения выполнять расчёты, составлять алгоритмы, применять формулы, проводить геометрические измерения и построения, читать, обрабатывать, интерпретировать и представлять информацию в виде таблиц, диаграмм и графиков, понимать вероятностный характер случайных событий.
Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым формируют логический стиль мышления. Ведущая роль принадлежит математике в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач – основы для организации учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления. Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.
Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
ЦЕЛИ И ОСОБЕННОСТИ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА» 10-11 КЛАССЫ
Приоритетными целями обучения математике в 10–11 классах на углублённом уровне продолжают оставаться: формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция, производная, интеграл), обеспечивающих преемственность и перспективность математического образования обучающихся; подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества; развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики; формирование функциональной математической грамотности: умения распознавать математические аспекты в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты. Основными линиями содержания математики в 10–11 классах углублённого уровня являются: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Начала математического анализа», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное во ФГОС СОО требование «умение оперировать понятиями: определение, аксиома, теорема, следствие, свойство, признак, доказательство, равносильные формулировки, умение формулировать обратное и противоположное утверждение, приводить примеры и контрпримеры, использовать метод математической индукции, проводить доказательные рассуждения при решении задач, оценивать логическую правильность рассуждений» относится ко всем учебным курсам, а формирование логических умений распределяется по всем годам обучения на уровне среднего общего образования.
ВЗАИМОСВЯЗЬ С ПРОГРАММОЙ ВОСПИТАНИЯ
Рабочая программа по математике сформирована с учетом рабочей программы воспитания МБОУ Развилковской средней общеобразовательной школы с углубленным изучением отдельных предметов. Воспитательный потенциал предмета «Математика» реализуется через:
. установление доверительных отношений между учителем и его учениками, способствующих позитивному восприятию обучающимися требований и просьб учителя, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности;
. побуждение школьников соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (учителями) и сверстниками (школьниками), принципы учебной дисциплины и самоорганизации; привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией – инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения;
. использование воспитательных возможностей содержания учебного предмета через демонстрацию детям примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;
. применение на уроках интерактивных форм работы обучающихся: интеллектуальных игр, стимулирующих познавательную мотивацию школьников; дидактического театра, где полученные на уроке знания обыгрываются в театральных постановках; дискуссий, которые дают обучающимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат школьников командной работе и взаимодействию с другими детьми;
. включение в урок игровых процедур, которые помогают поддержать мотивацию детей к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока;
. организация шефства мотивированных и эрудированных обучающихся над их неуспевающими одноклассниками, дающего школьникам социально значимый опыт сотрудничества и взаимной помощи.
МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ
В соответствии с ФГОС СОО математика является обязательным предметом на данном уровне образования. Настоящей программой по математике предусматривается изучение учебного предмета «Математика» в рамках трёх учебных курсов: «Алгебра и начала математического анализа», «Геометрия», «Вероятность и статистика». Формирование логических умений осуществляется на протяжении всех лет обучения на уровне среднего общего образования, а элементы логики включаются в содержание всех названных выше учебных курсов. Общее количество часов, направленных на изучение математики на углубленном уровне – 536: в 10 классе – 272 часа (8 часов в неделю), в 11 классе – 264 часа (8 часов в неделю).
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО МАТЕМАТИКЕ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
1) гражданского воспитания:
сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества, представление о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и другое), умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;
2) патриотического воспитания:
сформированность российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностное отношение к достижениям российских математиков и российской математической школы, использование этих достижений в других науках, технологиях, сферах экономики;
3) духовно-нравственного воспитания:
осознание духовных ценностей российского народа, сформированность нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного, осознание личного вклада в построение устойчивого будущего;
4) эстетического воспитания:
эстетическое отношение к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений, восприимчивость к математическим аспектам различных видов искусства;
5) физического воспитания:
сформированность умения применять математические знания в интересах здорового и безопасного образа жизни, ответственное отношение к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), физическое совершенствование при занятиях спортивно-оздоровительной деятельностью;
6) трудового воспитания:
готовность к труду, осознание ценности трудолюбия, интерес к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы, готовность и способность к математическому образованию и самообразованию на протяжении всей жизни, готовность к активному участию в решении практических задач математической направленности;
7) экологического воспитания:
сформированность экологической культуры, понимание влияния социально-экономических процессов на состояние природной и социальной среды, осознание глобального характера экологических проблем, ориентация на применение математических знаний для решения задач в области окружающей среды, планирование поступков и оценки их возможных последствий для окружающей среды;
8) ценности научного познания:
сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, понимание математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладение языком математики и математической культурой как средством познания мира, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
В результате изучения математики на уровне среднего общего образования у обучающегося будут сформированы познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные действия, совместная деятельность.
Познавательные универсальные учебные действия
Базовые логические действия:
Выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные суждения и выводы;
выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;
самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.
Работа с информацией:
выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи; выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
структурировать информацию, представлять её в различных формах, иллюстрировать графически;
оценивать надёжность информации по самостоятельно сформулированным критериям.
Коммуникативные универсальные учебные действия:
воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения;
представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.
Регулятивные универсальные учебные действия
Самоорганизация:
составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.
Самоконтроль:
владеть навыками познавательной рефлексии как осознания совершаемых
действий и мыслительных процессов, их результатов, владеть способами
самопроверки, самоконтроля процесса и результата решения математической
задачи;
предвидеть трудности, которые могут возникнуть при решении задачи,
вносить коррективы в деятельность на основе новых обстоятельств, данных,
найденных ошибок, выявленных трудностей;
оценивать соответствие результата цели и условиям, объяснять причины
достижения или недостижения результатов деятельности, находить ошибку, давать
оценку приобретённому опыту.
Совместная деятельность:
понимать и использовать преимущества командной и индивидуальной работы
при решении учебных задач, принимать цель совместной деятельности,
планировать организацию совместной работы, распределять виды работ,
договариваться, обсуждать процесс и результат работы, обобщать мнения
нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнений,
«мозговые штурмы» и иные), выполнять свою часть работы и координировать свои
действия с другими членами команды, оценивать качество своего вклада в общий
продукт по критериям, сформулированным участниками взаимодействия.
Предметные результаты освоения федеральной рабочей программы
по математике представлены по годам обучения в рамках отдельных учебных
курсов в соответствующих разделах настоящей программы.
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА» 10-11 КЛАССЫ
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
Учебный курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного учебного курса обучающиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.
Учебный курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. В то же время овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление.
В ходе изучения учебного курса «Алгебра и начала математического анализа» обучающиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами.
Учебный курс обладает значительным воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности и ответственности за полученный результат.
В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.
В структуре учебного курса «Алгебра и начала математического анализа» выделены следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и логика». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения на уровне среднего общего образования, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный учебный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и другие. По мере того как обучающиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении учебного курса, для решения самостоятельно сформулированной математической задачи, а затем интерпретировать свой ответ.
Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато на уровне основного общего образования. На уровне среднего общего образования особое внимание уделяется формированию навыков рациональных вычислений, включающих в себя использование различных форм записи числа, умение делать прикидку, выполнять приближённые вычисления, оценивать числовые выражения, работать с математическими константами. Знакомые обучающимся множества натуральных, целых, рациональных и действительных чисел дополняются множеством комплексных чисел. В каждом из этих множеств рассматриваются свойственные ему специфические задачи и операции: деление нацело, оперирование остатками на множестве целых чисел, особые свойства рациональных и иррациональных чисел, арифметические операции, а также извлечение корня натуральной степени на множестве комплексных чисел. Благодаря последовательному расширению круга используемых чисел и знакомству с возможностями их применения для решения различных задач формируется представление о единстве математики как науки и её роли в построении моделей реального мира, широко используются обобщение и конкретизация.
Линия «Уравнения и неравенства» реализуется на протяжении всего обучения на уровне среднего общего образования, поскольку в каждом разделе Программы предусмотрено решение соответствующих задач. В результате обучающиеся овладевают различными методами решения рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и систем, а также задач, содержащих параметры. Полученные умения широко используются при исследовании функций с помощью производной, при решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчёты по формулам, преобразования рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического материала происходит дальнейшее развитие алгоритмического и абстрактного мышления обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки.
Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями учебного курса, поскольку в каком-то смысле задаёт последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.
Содержательная линия «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах.
Содержательно-методическая линия «Множества и логика» включает в себя элементы теории множеств и математической логики. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины и их приложения в единое целое. Поэтому важно дать возможность обучающемуся понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей. Другим важным признаком математики как науки следует признать свойственную ей строгость обоснований и следование определённым правилам построения доказательств. Знакомство с элементами математической логики способствует развитию логического мышления обучающихся, позволяет им строить свои рассуждения на основе логических правил, формирует навыки критического мышления.
В учебном курсе «Алгебра и начала математического анализа» присутствуют основы математического моделирования, которые призваны способствовать формированию навыков построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа, интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал учебного курса широко используется для решения прикладных задач. При решении реальных практических задач обучающиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем учебного курса «Алгебра и начала математического анализа».
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ
На изучение учебного курса «Алгебра и начала математического анализа» отводится 272 часа: в 10 классе – 136 часов (4 часа в неделю), в 11 классе – 136 часов (4 часа в неделю).
СОДЕРЖАНИЕ ОБУЧЕНИЯ
10 КЛАСС
Числа и вычисления
Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.
Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений.
Степень с целым показателем. Бином Ньютона. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.
Арифметический корень натуральной степени и его свойства.
Степень с рациональным показателем и её свойства, степень с действительным показателем.
Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы.
Синус, косинус, тангенс, котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента.
Уравнения и неравенства
Тождества и тождественные преобразования. Уравнение, корень уравнения. Равносильные уравнения и уравнения-следствия. Неравенство, решение неравенства.
Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета.
Преобразования числовых выражений, содержащих степени и корни.
Иррациональные уравнения. Основные методы решения иррациональных уравнений.
Показательные уравнения. Основные методы решения показательных уравнений.
Преобразование выражений, содержащих логарифмы.
Логарифмические уравнения. Основные методы решения логарифмических уравнений.
Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений.
Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства, вычисление его значения, применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Исследование построенной модели с помощью матриц и определителей.
Построение математических моделей реальной ситуации с помощью уравнений и неравенств. Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.
Функции и графики
Функция, способы задания функции. Взаимно обратные функции. Композиция функций. График функции. Элементарные преобразования графиков функций.
Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Чётные и нечётные функции. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значения функции на промежутке.
Линейная, квадратичная и дробно-линейная функции. Элементарное исследование и построение их графиков.
Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем.
Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений.
Тригонометрическая окружность, определение тригонометрических функций числового аргумента.
Функциональные зависимости в реальных процессах и явлениях. Графики реальных зависимостей.
Начала математического анализа
Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История возникновения математического анализа как анализа бесконечно малых.
Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.
Непрерывные функции и их свойства. Точки разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач.
Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.
Производные элементарных функций. Производная суммы, произведения, частного и композиции функций.
Множества и логика
Множество, операции над множествами и их свойства. Диаграммы Эйлера–Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.
Определение, теорема, свойство математического объекта, следствие, доказательство, равносильные уравнения.
11 КЛАСС
Числа и вычисления
Натуральные и целые числа. Применение признаков делимости целых чисел, наибольший общий делитель (далее – НОД) и наименьшее общее кратное (далее – НОК), остатков по модулю, алгоритма Евклида для решения задач в целых числах.
Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни n-ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач.
Уравнения и неравенства
Система и совокупность уравнений и неравенств. Равносильные системы и системы-следствия. Равносильные неравенства.
Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств.
Основные методы решения показательных и логарифмических неравенств.
Основные методы решения иррациональных неравенств.
Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений.
Уравнения, неравенства и системы с параметрами.
Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов.
Функции и графики
График композиции функций. Геометрические образы уравнений и неравенств на координатной плоскости.
Тригонометрические функции, их свойства и графики.
Графические методы решения уравнений и неравенств. Графические методы решения задач с параметрами.
Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.
Начала математического анализа
Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.
Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.
Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.
Интеграл. Геометрический смысл интеграла. Вычисление определённого интеграла по формуле Ньютона-Лейбница.
Применение интеграла для нахождения площадей плоских фигур и объёмов геометрических тел.
Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.
ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА» (УГЛУБЛЕННЫЙ УРОВЕНЬ) НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ
К концу обучения в 10 классе обучающийся получит следующие предметные результаты по отдельным темам рабочей программы учебного курса «Алгебра и начала математического анализа»:
Числа и вычисления:
свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты, иррациональное число, множества рациональных и действительных чисел, модуль действительного числа;
применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни;
применять приближённые вычисления, правила округления, прикидку и оценку результата вычислений;
свободно оперировать понятием: степень с целым показателем, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;
свободно оперировать понятием: арифметический корень натуральной степени;
свободно оперировать понятием: степень с рациональным показателем;
свободно оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы;
свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента;
оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.
Уравнения и неравенства:
свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия, равносильные неравенства;
применять различные методы решения рациональных и дробно-рациональных уравнений, применять метод интервалов для решения неравенств;
свободно оперировать понятиями: многочлен от одной переменной, многочлен с целыми коэффициентами, корни многочлена, применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач;
свободно оперировать понятиями: система линейных уравнений, матрица, определитель матрицы 2 × 2 и его геометрический смысл, использовать свойства определителя 2 × 2 для вычисления его значения, применять определители для решения системы линейных уравнений, моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат;
использовать свойства действий с корнями для преобразования выражений;
выполнять преобразования числовых выражений, содержащих степени с рациональным показателем;
использовать свойства логарифмов для преобразования логарифмических выражений;
свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения, находить их решения с помощью равносильных переходов или осуществляя проверку корней;
применять основные тригонометрические формулы для преобразования тригонометрических выражений;
свободно оперировать понятием: тригонометрическое уравнение, применять необходимые формулы для решения основных типов тригонометрических уравнений;
моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.
Функции и графики:
свободно оперировать понятиями: функция, способы задания функции, взаимно обратные функции, композиция функций, график функции, выполнять элементарные преобразования графиков функций;
свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства;
свободно оперировать понятиями: чётные и нечётные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке;
свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем, график корня n-ой степени как функции обратной степени с натуральным показателем;
оперировать понятиями: линейная, квадратичная и дробно-линейная функции, выполнять элементарное исследование и построение их графиков;
свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики, использовать их графики для решения уравнений;
свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента;
использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами;
Начала математического анализа:
свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, линейный и экспоненциальный рост, формула сложных процентов, иметь представление о константе;
использовать прогрессии для решения реальных задач прикладного характера;
свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;
свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции;
свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;
свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции;
вычислять производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;
использовать геометрический и физический смысл производной для решения задач.
Множества и логика:
свободно оперировать понятиями: множество, операции над множествами;
использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;
свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства.
К концу обучения в 11 классе обучающийся получит следующие предметные результаты по отдельным темам рабочей программы учебного курса «Алгебра и начала математического анализа»:
Числа и вычисления:
свободно оперировать понятиями: натуральное и целое число, множества натуральных и целых чисел, использовать признаки делимости целых чисел, НОД и НОК натуральных чисел для решения задач, применять алгоритм Евклида;
свободно оперировать понятием остатка по модулю, записывать натуральные числа в различных позиционных системах счисления;
свободно оперировать понятиями: комплексное число и множество комплексных чисел, представлять комплексные числа в алгебраической и тригонометрической форме, выполнять арифметические операции с ними и изображать на координатной плоскости.
Уравнения и неравенства:
свободно оперировать понятиями: иррациональные, показательные и логарифмические неравенства, находить их решения с помощью равносильных переходов;
осуществлять отбор корней при решении тригонометрического уравнения;
свободно оперировать понятием тригонометрическое неравенство, применять необходимые формулы для решения основных типов тригонометрических неравенств;
свободно оперировать понятиями: система и совокупность уравнений и неравенств, равносильные системы и системы-следствия, находить решения системы и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений и неравенств;
решать рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства, содержащие модули и параметры;
применять графические методы для решения уравнений и неравенств, а также задач с параметрами;
моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат.
Функции и графики:
строить графики композиции функций с помощью элементарного исследования и свойств композиции двух функций;
строить геометрические образы уравнений и неравенств на координатной плоскости;
свободно оперировать понятиями: графики тригонометрических функций;
применять функции для моделирования и исследования реальных процессов.
Начала математического анализа:
использовать производную для исследования функции на монотонность и экстремумы;
находить наибольшее и наименьшее значения функции непрерывной на отрезке;
использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком;
свободно оперировать понятиями: первообразная, определённый интеграл, находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона-Лейбница;
находить площади плоских фигур и объёмы тел с помощью интеграла;
иметь представление о математическом моделировании на примере составления дифференциальных уравнений;
решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
10 КЛАСС
№ п/п | Наименование разделов и тем программы | Количество часов | Электронные (цифровые) образовательные ресурсы |
Всего | Контрольные работы | Практические работы |
1 | Множество действительных чисел. Многочлены. Рациональные уравнения и неравенства. Системы линейных уравнений | 24 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
2 | Функции и графики. Степенная функция с целым показателем | 12 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
3 | Арифметический корень n-ой степени. Иррациональные уравнения | 15 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
4 | Показательная функция. Показательные уравнения | 10 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
5 | Логарифмическая функция. Логарифмические уравнения | 18 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
6 | Тригонометрические выражения и уравнения | 22 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
7 | Последовательности и прогрессии | 10 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
8 | Непрерывные функции. Производная | 20 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
9 | Повторение, обобщение, систематизация знаний | 5 | 2 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 136 | 10 | 0 | |
11 КЛАСС
№ п/п | Наименование разделов и тем программы | Количество часов | Электронные (цифровые) образовательные ресурсы |
Всего | Контрольные работы | Практические работы |
1 | Исследование функций с помощью производной | 22 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
2 | Первообразная и интеграл | 12 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
3 | Графики тригонометрических функций. Тригонометрические неравенства | 14 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
4 | Иррациональные, показательные и логарифмические неравенства | 24 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
5 | Комплексные числа | 10 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
6 | Натуральные и целые числа | 10 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
7 | Системы рациональных, иррациональных показательных и логарифмических уравнений | 12 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
8 | Задачи с параметрами | 16 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
9 | Повторение, обобщение, систематизация знаний | 12 | 2 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 132 | 10 | 0 | |
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ» В 10-11 КЛАССАХ
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
Геометрия является одним из базовых курсов на уровне среднего общего образования, так как обеспечивает возможность изучения дисциплин естественно-научной направленности и предметов гуманитарного цикла. Поскольку логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии, при доказательстве теорем и построении цепочки логических утверждений при решении геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности физических задач.
Цель освоения программы учебного курса «Геометрия» на углублённом уровне – развитие индивидуальных способностей обучающихся при изучении геометрии, как составляющей предметной области «Математика и информатика» через обеспечение возможности приобретения и использования более глубоких геометрических знаний и действий, специфичных геометрии, и необходимых для успешного профессионального образования, связанного с использованием математики.
Приоритетными задачами курса геометрии на углублённом уровне, расширяющими и усиливающими курс базового уровня, являются:
расширение представления о геометрии как части мировой культуры и формирование осознания взаимосвязи геометрии с окружающим миром;
формирование представления о пространственных фигурах как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира, знание понятийного аппарата по разделу «Стереометрия» учебного курса геометрии;
формирование умения владеть основными понятиями о пространственных фигурах и их основными свойствами, знание теорем, формул и умение их применять, умения доказывать теоремы и находить нестандартные способы решения задач;
формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения, конструировать геометрические модели;
формирование понимания возможности аксиоматического построения математических теорий, формирование понимания роли аксиоматики при проведении рассуждений;
формирование умения владеть методами доказательств и алгоритмов решения, умения их применять, проводить доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием, формирование представления о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;
развитие и совершенствование интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению геометрии;
формирование функциональной грамотности, релевантной геометрии: умения распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, моделирования реальных ситуаций, исследования построенных моделей, интерпретации полученных результатов.
Основными содержательными линиями учебного курса «Геометрия» в 10–11 классах являются: «Прямые и плоскости в пространстве», «Многогранники», «Тела вращения», «Векторы и координаты в пространстве», «Движения в пространстве».
Сформулированное во ФГОС СОО требование «уметь оперировать понятиями», релевантными геометрии на углублённом уровне обучения в 10–11 классах, относится ко всем содержательным линиям учебного курса, а формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения. Содержание образования, соответствующее предметным результатам освоения Федеральной рабочей программы, распределённым по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно. Это позволяет организовать овладение геометрическими понятиями и навыками последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включать в общую систему геометрических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи.
Переход к изучению геометрии на углублённом уровне позволяет:
создать условия для дифференциации обучения, построения индивидуальных образовательных программ, обеспечить углублённое изучение геометрии как составляющей учебного предмета «Математика»;
подготовить обучающихся к продолжению изучения математики с учётом выбора будущей профессии, обеспечивая преемственность между общим и профессиональным образованием.
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ
На изучение учебного курса «Геометрия» на углублённом уровне отводится 204 часа: в 10 классе – 102 часа (3 часа в неделю), в 11 классе – 102 часа (3 часа в неделю).
СОДЕРЖАНИЕ ОБУЧЕНИЯ УЧЕБНОГО КУРСА
10 КЛАСС
Прямые и плоскости в пространстве
Основные понятия стереометрии. Точка, прямая, плоскость, пространство. Понятие об аксиоматическом построении стереометрии: аксиомы стереометрии и следствия из них.
Взаимное расположение прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые. Признаки скрещивающихся прямых. Параллельность прямых и плоскостей в пространстве: параллельные прямые в пространстве, параллельность трёх прямых, параллельность прямой и плоскости. Параллельное и центральное проектирование, изображение фигур. Основные свойства параллельного проектирования. Изображение фигур в параллельной проекции. Углы с сонаправленными сторонами, угол между прямыми в пространстве. Параллельность плоскостей: параллельные плоскости, свойства параллельных плоскостей. Простейшие пространственные фигуры на плоскости: тетраэдр, параллелепипед, построение сечений.
Перпендикулярность прямой и плоскости: перпендикулярные прямые в пространстве, прямые параллельные и перпендикулярные к плоскости, признак перпендикулярности прямой и плоскости, теорема о прямой перпендикулярной плоскости. Ортогональное проектирование. Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние от прямой до плоскости, проекция фигуры на плоскость. Перпендикулярность плоскостей: признак перпендикулярности двух плоскостей. Теорема о трёх перпендикулярах.
Углы в пространстве: угол между прямой и плоскостью, двугранный угол, линейный угол двугранного угла. Трёхгранный и многогранные углы. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трёхгранного угла. Теоремы косинусов и синусов для трёхгранного угла.
Многогранники
Виды многогранников, развёртка многогранника. Призма: n-угольная призма, прямая и наклонная призмы, боковая и полная поверхность призмы. Параллелепипед, прямоугольный параллелепипед и его свойства. Кратчайшие пути на поверхности многогранника. Теорема Эйлера. Пространственная теорема Пифагора. Пирамида: n-угольная пирамида, правильная и усечённая пирамиды. Свойства рёбер и боковых граней правильной пирамиды. Правильные многогранники: правильная призма и правильная пирамида, правильная треугольная пирамида и правильный тетраэдр, куб. Представление о правильных многогранниках: октаэдр, додекаэдр и икосаэдр.
Вычисление элементов многогранников: рёбра, диагонали, углы. Площадь боковой поверхности и полной поверхности прямой призмы, площадь оснований, теорема о боковой поверхности прямой призмы. Площадь боковой поверхности и поверхности правильной пирамиды, теорема о площади усечённой пирамиды.
Симметрия в пространстве. Элементы симметрии правильных многогранников. Симметрия в правильном многограннике: симметрия параллелепипеда, симметрия правильных призм, симметрия правильной пирамиды.
Векторы и координаты в пространстве
Понятия: вектор в пространстве, нулевой вектор, длина ненулевого вектора, векторы коллинеарные, сонаправленные и противоположно направленные векторы. Равенство векторов. Действия с векторами: сложение и вычитание векторов, сумма нескольких векторов, умножение вектора на число. Свойства сложения векторов. Свойства умножения вектора на число. Понятие компланарные векторы. Признак компланарности трёх векторов. Правило параллелепипеда. Теорема о разложении вектора по трём некомпланарным векторам. Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Угол между векторами. Скалярное произведение векторов.
11 КЛАСС
Тела вращения
Понятия: цилиндрическая поверхность, коническая поверхность, сферическая поверхность, образующие поверхностей. Тела вращения: цилиндр, конус, усечённый конус, сфера, шар. Взаимное расположение сферы и плоскости, касательная плоскость к сфере. Изображение тел вращения на плоскости. Развёртка цилиндра и конуса. Симметрия сферы и шара.
Объём. Основные свойства объёмов тел. Теорема об объёме прямоугольного параллелепипеда и следствия из неё. Объём прямой и наклонной призмы, цилиндра, пирамиды и конуса. Объём шара и шарового сегмента.
Комбинации тел вращения и многогранников. Призма, вписанная в цилиндр, описанная около цилиндра. Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Понятие многогранника, описанного около сферы, сферы, вписанной в многогранник или тело вращения.
Площадь поверхности цилиндра, конуса, площадь сферы и её частей. Подобие в пространстве. Отношение объёмов, площадей поверхностей подобных фигур. Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.
Построение сечений многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельные основанию и проходящие через вершину), сечения шара, методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости.
Векторы и координаты в пространстве
Векторы в пространстве. Операции над векторами. Векторное умножение векторов. Свойства векторного умножения. Прямоугольная система координат в пространстве. Координаты вектора. Разложение вектора по базису. Координатно-векторный метод при решении геометрических задач.
Движения в пространстве
Движения пространства. Отображения. Движения и равенство фигур. Общие свойства движений. Виды движений: параллельный перенос, центральная симметрия, зеркальная симметрия, поворот вокруг прямой. Преобразования подобия. Прямая и сфера Эйлера.
ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ» (УГЛУБЛЕННЫЙ УРОВЕНЬ) НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ
К концу 10 класса обучающийся научится:
свободно оперировать основными понятиями стереометрии при решении задач и проведении математических рассуждений;
применять аксиомы стереометрии и следствия из них при решении геометрических задач;
классифицировать взаимное расположение прямых в пространстве, плоскостей в пространстве, прямых и плоскостей в пространстве;
свободно оперировать понятиями, связанными с углами в пространстве: между прямыми в пространстве, между прямой и плоскостью;
свободно оперировать понятиями, связанными с многогранниками;
свободно распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
классифицировать многогранники, выбирая основания для классификации;
свободно оперировать понятиями, связанными с сечением многогранников плоскостью;
выполнять параллельное, центральное и ортогональное проектирование фигур на плоскость, выполнять изображения фигур на плоскости;
строить сечения многогранников различными методами, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу;
вычислять площади поверхностей многогранников (призма, пирамида), геометрических тел с применением формул;
свободно оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии, центр, ось и плоскость симметрии фигуры;
свободно оперировать понятиями, соответствующими векторам и координатам в пространстве;
выполнять действия над векторами;
решать задачи на доказательство математических отношений и нахождение геометрических величин, применяя известные методы при решении математических задач повышенного и высокого уровня сложности;
применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач;
извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
применять полученные знания на практике: сравнивать и анализировать реальные ситуации, применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин;
иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий.
К концу 11 класса обучающийся научится:
свободно оперировать понятиями, связанными с цилиндрической, конической и сферической поверхностями, объяснять способы получения;
оперировать понятиями, связанными с телами вращения: цилиндром, конусом, сферой и шаром;
распознавать тела вращения (цилиндр, конус, сфера и шар) и объяснять способы получения тел вращения;
классифицировать взаимное расположение сферы и плоскости;
вычислять величины элементов многогранников и тел вращения, объёмы и площади поверхностей многогранников и тел вращения, геометрических тел с применением формул;
свободно оперировать понятиями, связанными с комбинациями тел вращения и многогранников: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения;
вычислять соотношения между площадями поверхностей и объёмами подобных тел;
изображать изучаемые фигуры, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу, строить сечения тел вращения;
извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
свободно оперировать понятием вектор в пространстве;
выполнять операции над векторами;
задавать плоскость уравнением в декартовой системе координат;
решать геометрические задачи на вычисление углов между прямыми и плоскостями, вычисление расстояний от точки до плоскости, в целом, на применение векторно-координатного метода при решении;
свободно оперировать понятиями, связанными с движением в пространстве, знать свойства движений;
выполнять изображения многогранников и тел вращения при параллельном переносе, центральной симметрии, зеркальной симметрии, при повороте вокруг прямой, преобразования подобия;
строить сечения многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельные основанию и проходящие через вершину), сечения шара;
использовать методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости;
доказывать геометрические утверждения;
применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной и неявной форме;
решать задачи на доказательство математических отношений и нахождение геометрических величин;
применять программные средства и электронно-коммуникационные системы при решении стереометрических задач;
применять полученные знания на практике: сравнивать, анализировать и оценивать реальные ситуации, применять изученные понятия, теоремы, свойства в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин;
иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
10 КЛАСС
№ п/п | Наименование разделов и тем программы | Количество часов | Электронные (цифровые) образовательные ресурсы |
Всего | Контрольные работы | Практические работы |
1 | Введение в стереометрию | 23 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
2 | Взаимное расположение прямых в пространстве | 6 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
3 | Параллельность прямых и плоскостей в пространстве | 8 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
4 | Перпендикулярность прямых и плоскостей в пространстве | 25 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
5 | Углы и расстояния | 16 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
6 | Многогранники | 7 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
7 | Векторы в пространстве | 12 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
8 | Повторение, обобщение и систематизация знаний | 5 | 2 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 102 | 6 | 0 | |
11 КЛАСС
№ п/п | Наименование разделов и тем программы | Количество часов | Электронные (цифровые) образовательные ресурсы |
Всего | Контрольные работы | Практические работы |
1 | Аналитическая геометрия | 15 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
2 | Повторение, обобщение и систематизация знаний | 15 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
3 | Объём многогранника | 17 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
4 | Тела вращения | 24 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
5 | Площади поверхности и объёмы круглых тел | 9 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
6 | Движения | 5 | 1 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
7 | Повторение, обобщение и систематизация знаний | 14 | 2 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 99 | 8 | 0 | |
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ВЕРОЯТНОСТЬ И СТАТИСТИКА» В 10-11 КЛАССАХ
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
Учебный курс «Вероятность и статистика» базового уровня является продолжением и развитием одноимённого учебного курса базового уровня основной школы. Курс предназначен для формирования у обучающихся статистической культуры и понимания роли теории вероятностей как математического инструмента для изучения случайных событий, величин и процессов. При изучении курса обогащаются представления учащихся о методах исследования изменчивого мира, развивается понимание значимости и общности математических методов познания как неотъемлемой части современного естественно-научного мировоззрения.
Содержание курса направлено на закрепление знаний, полученных при изучении курса основной школы и на развитие представлений о случайных величинах и взаимосвязях между ними на важных примерах, сюжеты которых почерпнуты из окружающего мира.
В соответствии с указанными целями в структуре учебного курса «Вероятность и статистика» средней школы на базовом уровне выделены следующие основные содержательные линии: «Случайные события и вероятности», «Случайные величины и закон больших чисел».
Важную часть курса занимает изучение геометрического и биномиального распределений и знакомство с их непрерывными аналогами ― показательным и нормальным распределениями.
Содержание линии «Случайные события и вероятности» служит основой для формирования представлений о распределении вероятностей между значениями случайных величин, а также эта линия необходима как база для изучения закона больших чисел – фундаментального закона, действующего в природе и обществе и имеющего математическую формализацию. Сам закон больших чисел предлагается в ознакомительной форме с минимальным использованием математического формализма.
Темы, связанные с непрерывными случайными величинами, акцентируют внимание школьников на описании и изучении случайных явлений с помощью непрерывных функций. Основное внимание уделяется показательному и нормальному распределениям, при этом предполагается ознакомительное изучение материала без доказательств применяемых фактов.
МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ
На изучение курса «Вероятность и статистика» на базовом уровне отводится 1 час в неделю в течение каждого года обучения, всего 68 учебных часов.
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА
10 КЛАСС
Представление данных с помощью таблиц и диаграмм. Среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, дисперсия и стандартное отклонение числовых наборов.
Случайные эксперименты (опыты) и случайные события. Элементарные события (исходы). Вероятность случайного события. Близость частоты и вероятности событий. Случайные опыты с равновозможными элементарными событиями. Вероятности событий в опытах с равновозможными элементарными событиями.
Операции над событиями: пересечение, объединение, противоположные события. Диаграммы Эйлера. Формула сложения вероятностей.
Условная вероятность. Умножение вероятностей. Дерево случайного эксперимента. Формула полной вероятности. Независимые события.
Комбинаторное правило умножения. Перестановки и факториал. Число сочетаний. Треугольник Паскаля. Формула бинома Ньютона.
Бинарный случайный опыт (испытание), успех и неудача. Независимые испытания. Серия независимых испытаний до первого успеха. Серия независимых испытаний Бернулли.
Случайная величина. Распределение вероятностей. Диаграмма распределения. Примеры распределений, в том числе, геометрическое и биномиальное.
11 КЛАСС
Числовые характеристики случайных величин: математическое ожидание, дисперсия и стандартное отклонение. Примеры применения математического ожидания, в том числе в задачах из повседневной жизни. Математическое ожидание бинарной случайной величины. Математическое ожидание суммы случайных величин. Математическое ожидание и дисперсия геометрического и биномиального распределений.
Закон больших чисел и его роль в науке, природе и обществе. Выборочный метод исследований.
Примеры непрерывных случайных величин. Понятие о плотности распределения. Задачи, приводящие к нормальному распределению. Понятие о нормальном распределении.
ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА «ВЕРОЯТНОСТЬ И СТАТИСТИКА»
10 КЛАСС
Читать и строить таблицы и диаграммы.
Оперировать понятиями: среднее арифметическое, медиана, наибольшее, наименьшее значение, размах массива числовых данных.
Оперировать понятиями: случайный эксперимент (опыт) и случайное событие, элементарное событие (элементарный исход) случайного опыта; находить вероятности в опытах с равновозможными случайными событиями, находить и сравнивать вероятности событий в изученных случайных экспериментах.
Находить и формулировать события: пересечение и объединение данных событий, событие, противоположное данному событию; пользоваться диаграммами Эйлера и формулой сложения вероятностей при решении задач.
Оперировать понятиями: условная вероятность, независимые события; находить вероятности с помощью правила умножения, с помощью дерева случайного опыта.
Применять комбинаторное правило умножения при решении задач.
Оперировать понятиями: испытание, независимые испытания, серия испытаний, успех и неудача; находить вероятности событий в серии независимых испытаний до первого успеха; находить вероятности событий в серии испытаний Бернулли.
Оперировать понятиями: случайная величина, распределение вероятностей, диаграмма распределения.
11 КЛАСС
Сравнивать вероятности значений случайной величины по распределению или с помощью диаграмм.
Оперировать понятием математического ожидания; приводить примеры, как применяется математическое ожидание случайной величины находить математическое ожидание по данному распределению.
Иметь представление о законе больших чисел.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
10 КЛАСС
№ п/п | Наименование разделов и тем программы | Количество часов | Электронные (цифровые) образовательные ресурсы |
Всего | Контрольные работы | Практические работы |
1 | Представление данных и описательная статистика | 4 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
2 | Случайные опыты и случайные события, опыты с равновозможными элементарными исходами | 3 | | 1 | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
3 | Операции над событиями, сложение вероятностей | 3 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
4 | Условная вероятность, дерево случайного опыта, формула полной вероятности и независимость событий | 6 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
5 | Элементы комбинаторики | 4 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
6 | Серии последовательных испытаний | 3 | | 1 | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
7 | Случайные величины и распределения | 6 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
8 | Обобщение и систематизация знаний | 5 | 2 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 34 | 2 | 2 | |
.
11 КЛАСС
№ п/п | Наименование разделов и тем программы | Количество часов | Электронные (цифровые) образовательные ресурсы |
Всего | Контрольные работы | Практические работы |
1 | Математическое ожидание случайной величины | 4 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
2 | Дисперсия и стандартное отклонение случайной величины | 4 | | 1 | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
3 | Закон больших чисел | 3 | | 1 | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
4 | Непрерывные случайные величины (распределения) | 2 | | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
5 | Нормальное распределения | 2 | | 1 | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
6 | Повторение, обобщение и систематизация знаний | 18 | 2 | | Библиотека ЦОК https://m.edsoo.ru/7f4131ce |
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 33 | 2 | 3 | |
УЧЕБНО – МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
ОБОРУДОВАНИЕ КАБИНЕТА
Стол
Стул
Шкафы
МЕТОДИЧЕСКАЯ И УЧЕБНАЯ ЛИТЕРАТУРА
10-11 КЛАСС
Ш.А. Алимов, Ю.М. Колягин, М. В. Ткачева, Н.Е. Федорова, М.И. Шабунин Математика: Алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10-11класс
Акционерное общество Издательство «Просвещение»
Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Поздняк, Л.С. Киселева Математика: Алгебра и начала математического анализа, геометрия. Геометрия. 10-11класс
ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ
10 КЛАСС https://lesson.edu.ru/lesson/79d7ab78-1e77-4faf-9158-68a140c1ed86?backUrl=%2F03%2F10
11 КЛАСС https://lesson.edu.ru/lesson/79d7ab78-1e77-4faf-9158-68a140c1ed86?backUrl=%2F03%2F10
МАТЕРИАЛЬНО – ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
УЧЕБНОЕ ОБОРУДОВАНИЕ
Ноутбук
Телевизор
Проектор