Р А Б О Ч А Я П Р О Г Р А М М А
учебного предмета «Математика»
Класс: 7
Уровень образования: основное общее образование
Срок реализации программы - 2018-2019 уч.г.
Количество часов -175ч за год/ 5 ч в неделю
Планирование составлено на основе:
Федерального государственного образовательного стандарта основного общего образования, примерной программы по математике основного общего образования, авторской программы по алгебре 7-9 кл. под редакцией Миндюк Н.Г, авторской программы по геометрии 7-9 кл. под редакцией Л.С. Атанасяна
Учебники: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворов., под редакцией С.А. Теляковского «Алгебра.7класс»; учебник для общеобразовательных организаций.-5-е изд, М.: Просвещение,2015. Рекомендовано Министерством образования и науки РФ; Л.С.Атанасян, В.Ф.Бутузов, С.Б. Кадомцев, Э.Г.Позняк, И.И. Юдина. «Геометрия.7-9 классы»; учебник для общеобразовательных организаций. М.: Просвещение, 2013. Рекомендовано Министерством образования и науки РФ.
Рабочую программу составила Панкратьева У.Ю.
учитель математики I квалификационной категории.
2018 г.
Материалы для рабочей программы составлены на основе:
федерального государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки Российской Федерации от 17.12.2010г № 1897, с изменениями, внесёнными приказом Министрества и науки РФ от31.12.2015г № 1577;
примерной программы по математике основного общего образования;
федерального перечня учебников, утверждённых, рекомендованных (допущенных) к использованию Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, реализующих программы общего образования;
авторского тематического планирования учебного материала;
Учебный предмет «Математика» в 7 классе представлен традиционно двумя содержательными курсами: «Алгебра» и «Геометрия», на изучение которых отводится 5ч в неделю (всего 175ч за год). Из них на изучение алгебры - 3 часа в неделю (105 часов за год) и на изучение геометрии - 2 часа в неделю (70 часов за год). Для реализации требований ФГОС в каждый из курсов введен внутрипредметный модуль «Занимательная математика» (35ч)
Изучение направлено на реализацию целей и задач, сформулированных в государственном стандарте общего образования по математике:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Планируемые результаты освоения курса «Математика»
Стандарт устанавливает требования к результатам освоения обучающимися основной образовательной программы основного общего образования:
личностным, включающим готовность и способность обучающихся к саморазвитию и личностному самоопределению, сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок, отражающих личностные и гражданские позиции в деятельности, социальные компетенции, правосознание, способность ставить цели и строить жизненные планы, способность к осознанию российской идентичности в поликультурном социуме;
метапредметным, включающим освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в учебной, познавательной и социальной практике, самостоятельность планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, построение индивидуальной образовательной траектории;
предметным, включающим освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами.
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
Личностные результаты освоения образовательной программы:
1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству; осознание своей этнической принадлежности, знание истории, языка, культуры своего народа на примере содержания текстовых задач;
2) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
3) формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции, к истории, культуре, религии, традициям; готовности и способности вести диалог с другими людьми и достигать в нём взаимопонимания;
4) освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах, включая взрослые и социальные сообщества; участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций;
5) развитие морального сознания и компетентности в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам;
6) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
7) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
8) первоначальное представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
9) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
10) креативность мышления, инициатива, находчивость, активность при решении арифметических задач;
11) умение контролировать процесс и результат учебной математической деятельности;
12) формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
13) формирование ценности здорового и безопасного образа жизни;
14) осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи через участие во внеклассной работе;
15) развитие эстетического сознания, творческой деятельности эстетического характера через выполнение творческих работ
Метапредметные результаты освоения образовательной программы:
1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
4) умение оценивать правильность выполнения учебной задачи, ее объективную трудность и собственные возможности её решения;
5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
6) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
7) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
8) смысловое чтение;
9) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;
10) умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью;
11) формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ– компетенции);
12) первоначальное представление об идеях и методах математики как об универсальном языке науки и техники;
13) развитие способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
14) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
15) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
16) умение выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
17) понимание сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
18) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
19) способность планировать и осуществлять деятельность, направленную на решение задач исследовательского характера
Предметные результаты освоения образовательной программы (алгебра)
умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развитие способности обосновывать суждения, проводить классификацию;
владение базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, формирование представлений о статистических закономерностях в реальном мире и различных способах их изучения;
умение выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач;
правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, переход от одной формы записи к другой (например, проценты в виде десятичной дроби; выделение целой части из неправильной дроби); решать три основные задачи на дроби;
сравнивать числа, упорядочивать наборы чисел, понимать связь отношений «больше», «меньше» с расположением точек на координатной прямой; находить среднее арифметическое нескольких чисел;
владеть навыками вычисления по формулам, знать основные единицы измерения и уметь перейти от одних единиц измерения к другим в соответствии с условиями задачи;
находить числовые значения буквенных выражений;
умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса.
Предметные результаты освоения образовательной программы (геометрия)
Овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях ( число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с геометрическим текстом(анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
овладение навыками устных, письменных, инструментальных вычислений;
овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развития пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
умение измерять длины отрезков, величины углов, использовать формулы для вычисления периметров, площадей и объемов геометрических фигур;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из сложных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
Содержание обучения (алгебра)
1. Выражения, тождества, уравнения (16ч + 4ч впм)
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Основная цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
Первая тема курса 7 класса является связующим звеном между курсом математики 5-6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.
Нахождение значений числовых и буквенных выражений дает возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими обучающиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.
В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки
и
, дается понятие о двойных неравенствах.
При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, обучающиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.
Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах= b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.
Изучение темы завершается ознакомлением обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Обучающиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.
2. Функции (8+3ч впм)
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.
Основная цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Обучающиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.
Функциональные понятия получают свою конкретизацию при изучении линейной функции и её частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. обучающиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kx, где k
0, как зависит от значений k и b взаимное расположение графиков двух функций вида y = kx + b.
Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.
3. Степень с натуральным показателем (9ч+ 3ч впм)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.
Основная цель: выработать умение выполнять действия над степенями с натуральными показателями.
В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса обучающиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств
где
n, (аb)n=anbn обучающиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.
Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции y=х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.
Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.
4. Многочлены (14 + 3ч впм)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Основная цель: выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.
Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Обучающиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.
Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.
В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.
5. Формулы сокращенного умножения (16 ч + 4ч впм)
Формулы (а ± b)2 = а2 ± 2ab + b2, (а ± b)3 = а3 ± 3а2b + 3аb2 ± b3, (а - b) (а + b) = а2 - b2 , (а ± b) (а2
ab + b2) = а3±b3. Применение формул сокращенного умножения в преобразованиях выражений.
Основная цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - b2, (а ± b)2 = а2 ± 2ab + b2. Обучающиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».
Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± 3а2b + 3аb2 ± b3, а3 ± b3 = (а ± b) (а2
аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.
В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.
6. Системы линейных уравнений (14 ч + 3ч впм)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Основная цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.
Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.
Формируется умение строить график уравнения а + by = с, где а
0 или b
0, при различных значениях а, b, с. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.
Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.
7. Повторение (7ч + 1ч впм)
Основная цель: повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.
Содержание учебного предмета «геометрия»
1. Начальные геометрические сведения (9ч + 2ч впм).
Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами
2. Треугольники (15ч + 4ч впм)
Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; 'формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи.
3. Параллельные прямые (10+3 ч впм.)
Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми
4. Соотношения между сторонами и углами треугольника (16ч+ 4ч впм).
Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника, проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30°, признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи.
5. Повторение. Решение задач. (5ч.+1 ч впм)
Тематическое планирование изучения материала (алгебра)
№п/п | Название темы. | Количество часов. | ВПМ «Занимательная математика». | Контрольные работы |
Глава 1. | Выражения. Тождества. Уравнения. | 16 | 4 | 2 |
§ 1 | Выражения | 4 | 1 | |
§ 2 | Преобразование выражений | 4 | 1 | |
| Контрольная работа №1а | | | 1 |
§ 3 | Уравнения с одной переменной | 5 | 1 | |
§ 4 | Статистические характеристики | 2 | 1 | |
| Контрольная работа № 2а | | | 1 |
Глава II | Функции. | 8 | 3 | 1 |
§ 5 | Функции и их графики | 4 | 2 | |
§ 6 | Линейная функция | 4 | 1 | |
| Контрольная работа № 3а | | | 1 |
Глава III. | Степень с натуральным показателем. | 9 | 3 | 1 |
§ 7 | Степень и её свойства | 5 | 2 | |
§ 8 | Одночлены | 4 | 1 | |
| Контрольная работа № 4а | | | 1 |
Глава IV. | Многочлены. | 14 | 3 | 2 |
§ 9 | Сумма и разность многочленов | 3 | 1 | |
§ 10 | Произведение одночлена и многочлена | 5 | 1 | |
| Контрольная работа № 5а | | | 1 |
§ 11 | Произведение многочленов | 6 | 1 | |
| Контрольная работа № 6а | | | 1 |
Глава V. | Формулы сокращённого умножения. | 16 | 4 | 2 |
§ 12 | Квадрат суммы и квадрат разности | 5 | 1 | |
§ 13 | Разность квадратов. Сумма и разность кубов. | 5 | 1 | |
| Контрольная работа № 7а | | | 1 |
§ 14 | Преобразование целых выражений. | 6 | 2 | |
| Контрольная работа № 8а | | | 1 |
Глава VI. | Системы линейных уравнений. | 14 | 3 | 1 |
§ 15 | Линейные уравнения с двумя переменными и их системы. | 5 | 1 | |
§ 16 | Решение систем линейных уравнений. | 9 | 2 | |
| Контрольная работа № 9а | | | 1 |
Глава VII. | Повторение. | 7 | 1 | 1 |
| Итого: | 83 | 21 | 10 |
| ИТОГО | 104 | |
Тематическое планирование изучения материала (геометрия)
№ п/п | Раздел | Количество часов | Вмп «Занимательная математика». | Контрольные работы |
Глава 1 | Начальные геометрические сведения. | 9ч | 2ч | 1 |
§ 1 | Прямая и отрезок. | 2 | | |
§ 2 | Луч и угол. | 2 | 1 | |
§ 3 | Сравнение отрезков и углов. | 2 | 1 | |
§ 4 | Измерение отрезков. | 1 | | |
§ 5 | Измерение углов. | 1 | | |
§ 6 | Перпендикулярные прямые. | 1 | | |
| Контрольная работа №1г | | | |
Глава 2 | Треугольники | 15ч | 4ч | 1 |
§ 1 | Первый признак равенства треугольников. | 3 | 1 | |
§ 2 | Медианы, биссектрисы и высоты треугольника. | 4 | 1 | |
§ 3 | Второй и третий признаки равенства треугольников. | 4 | 1 | |
§ 4 | Задачи на построение. | 4 | 1 | |
| Контрольная работа №2г | | | 1 |
Глава 3 | Параллельные прямые | 10ч | 3ч | 1 |
§ 1 | Признаки параллельности двух прямых. | 5 | 2 | |
§ 2 | Аксиома параллельных прямых | 5 | 1 | |
| Контрольная работа №3г | | | 1 |
Глава 4 | Соотношения между сторонами и углами треугольника | 16ч | 4ч | 2 |
§ 1 | Сумма углов треугольника | 2 | | |
§ 2 | Соотношения между сторонами и углами треугольника | 4 | 1 | |
| Контрольная работа №4г | | | 1 |
§ 3 | Прямоугольные треугольники | 4 | 1 | |
§ 4 | Построение треугольника по трём элементам | 6 | 2 | |
| Контрольная работа №5г | | | 1 |
| Повторение. Решение задач. | 5 ч | 1ч | 1 |
| | 55ч | 14 | 6 |
| ВСЕГО | 69 | |
Промежуточная аттестация по «Математике» будет проведена в форме комбинированной контрольной работы
Итого: 104ч (алгебра) + 69ч (геометрия) +2ч (1ч ПА+ 1ч анализ ПА)= 175ч
11