Рабочая программа составлена на основе сборник рабочих программ. Алгебра 7 – 9 классы: пособие для учителей общеобразовательных организаций сост. Т.А. Бурмистрова – 2 –е изд. Доп. - М.: «Просвещение», 2014г.
Планируемые результаты освоения алгебры в 7-9 классах
РАЦИОНАЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) понимать особенности десятичной системы счисления;
2) владеть понятиями, связанными с делимостью натуральных чисел;
Выпускник получит возможность:
3) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) использовать начальные представления о множестве действительных чисел,
Выпускник получит возможность:
2) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике:
ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ
Выпускник научится:
использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ
Выпускник научится:
1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
Выпускник получит возможность:
2)научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приемов.
УРАВНЕНИЯ
Выпускник научится:
1) решать основные виды рациональных уравнений с одной переменной.
Выпускник получит возможность:
2) овладеть специальными приемами решения уравнений.
8 класс
РАЦИОНАЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
2) сравнивать и упорядочивать рациональные числа;
3) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
Выпускник получит возможность:
4) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
5) углубить и развить представления о натуральных числах и свойствах делимости;
ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) владеть понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
2) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике:
ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ
Выпускник научится:
1)использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
2)понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ
Выпускник научится:
1) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
2) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
3) выполнять разложение многочленов на множители,
Выпускник получит возможность:
4)научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приемов;
УРАВНЕНИЯ
Выпускник научится:
1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Выпускник получит возможность:
овладеть специальными приемами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
НЕРАВЕНСТВА
Выпускник научится:
1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
Выпускник получит возможность научиться:
2) разнообразным приемам доказательства неравенств.
ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ
Выпускник научится:
1) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
Выпускник получит возможность научиться:
2) проводить исследования, связанные с изучением свойств функций.
9 класс
РАЦИОНАЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) использовать понятия и учения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
Выпускник получит возможность:
2) научиться использовать приемы , рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) владеть понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
2) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ
Выпускник научится:
1) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
2) выполнять разложение многочленов на множители,
Выпускник получит возможность:
3) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
УРАВНЕНИЯ
Выпускник научится:
1) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
Выпускник получит возможность:
2)применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
НЕРАВЕНСТВА
Выпускник научится:
1) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
2) применять аппарат неравенств для решения задач из различных разделов курса.
Выпускник получит возможность научиться:
3) разнообразным приемам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач смежных предметов, практики;
4) применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ
Выпускник научится:
1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);
2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Выпускник получит возможность научиться:
4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-задачные, с «выколотыми» точками и т.п.);
5) использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ
Выпускник научится:
1) понимать и использовать язык последовательностей (термины, символические обозначения);
2) применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Выпускник получит возможность научиться:
3) решать комбинированные задачи с применением формул n-го члена и суммы первых nчленов арифметической и геометрической прогрессий, применять при этом аппарат уравнений и неравенств;
4) понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую – с экспоненциальным ростом.
ОПИСАТЕЛЬНАЯ СТАТИСТИКА
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в идее таблицы, диаграммы.
СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
КОМБИНАТОРИКА
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приемам решения комбинаторных задач.
Содержание учебного курса алгебры в 7-9 классах
АРИФМЕТИКА
Рациональные числа. Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение m/n, где m - целое число, n – натуральное. Степень с целым показателем.
Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем.
Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.
Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.
Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.
Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире, Выделение множителя - степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.
АЛГЕБРА
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.
Степень с натуральным показателем и её свойства, одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.
Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.
Рациональные выражения и их преобразования. Доказательство тождеств.
Квадратные корни. Свойства арифметических квадратных корней и их применения к преобразованию числовых выражений и вычислениям.
Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Применение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвертой степеней. Решение дробно-рациональных уравнении.
Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент, прямой; условие параллельности прямых. График простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.
Неравенства. Числовые неравенства и их свойства.
Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.
ФУНКЦИИ
Основные понятия. Зависимости между величинами. Понятие функции. 0бласть определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.
Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций y=
, y=
, y=
.
Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.
Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.
ВЕРОЯТНОСТЬ И СТАТИСТИКА
Статистика. Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.
Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Случайные события. Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.
Элементы комбинаторики. Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Случайные величины. Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
ЛОГИКА И МНОЖЕСТВА
Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.
Иллюстрация отношений между множествами с помощью диаграмм Эйлера–Венна.
Элементы логики. Понятие о равносильности, следовании, употребление логических связок еслu…,то…, в mом u mоль-ко в mом случае, логические связки u, uлu.
МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ
История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме, Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л, Эйлер.
Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, больше четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.
Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я, Бернулли. А.Н. Колмогоров.
Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.
Тематическое планирование с определением основных видов деятельности
| | | | |
7 класс |
Раздел | Количество часов | Темы | Количество часов | Основные виды деятельности учащихся (на уровне универсальных учебных действий) |
Глава I. Выражения, тождества, уравнения. | 22 | Выражения | 5 | Находить значения числовых выражений, а также выражений с переменными при указанных значениях переменных. Использовать знаки , Выполнять простейшие преобразования выражений: приводить подобные слагаемые, раскрывать скобки в сумме или разности выражений. Решать уравнения вида ах = b при различных значениях а и b, а также несложные уравнения, сводящиеся к ним. Использовать аппарат уравнений для решения текстовых задач, интерпретировать результат. Использовать простейшие статистические характеристики (среднее арифметическое, размах, мода, медиана) для анализа ряда данных в несложных ситуациях |
Преобразование выражений | 4 |
Контрольная работа №1 | 1 |
Уравнения с одной переменной | 7 |
Статистические характеристики | 4 |
Контрольная работа №2 | 1 |
Глава II. Функции. | 11 | Функции и их графики | 5 | Вычислять значения функции, заданной формулой, составлять таблицы значений функции. По графику функции находить значение функции по известному значению аргумента и решать обратную задачу. Строить графики прямой пропорциональности и линейной функции, описывать свойства этих функций. Понимать, как влияет знак коэффициента k на расположение в координатной плоскости графика функции у = kx, где k ≠ 0, как зависит от значений k и b взаимное расположение графиков двух функций вида у = kx + b. Интерпретировать графики реальных зависимостей, описываемых формулами вида у = kx, где k ≠ 0 и у =kx + b |
Линейная функция | 5 |
Контрольная работа №3 | 1 |
Глава III. Степень с натуральным показателем | 11 | Степень и её свойства | 5 | Вычислять значения выражений вида аn, где а — произвольное число, n — натуральное число, устно и письменно, а также с помощью калькулятора. Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем. Применять свойства степени для преобразования выражений. Выполнять умножение одночленов и возведение одночленов в степень. Строить графики функций у = х2 и у = x3. Решать графически уравнения х2 = kx + b, x3 = kx + b, где k и b — некоторые числа |
Одночлены | 5 |
Контрольная работа №4 | 1 |
Глава IV. Многочлены. | 17 | Сумма и разность многочленов | 3 | Записывать многочлен в стандартном виде, определять степень многочлена. Выполнять сложение и вычитание многочленов, умножение одночлена на многочлен и многочлена на многочлен. Выполнять разложение много членов на множители, используя вынесение множителя за скобки и способ группировки. Применять действия с многочленами при решении разнообразных задач, в частности при решении текстовых задач с помощью уравнений |
Произведение многочлена и одночлена | 6 |
Контрольная работа №5 | 1 |
Произведение многочленов | 6 |
Контрольная работа №6 | 1 |
Глава V. Формулы сокращённого умножения | 19 | Квадрат суммы и квадрат разности | 5 | Доказывать справедливость формул сокращённого умножения, применять их в преобразованиях целых выражений в многочлены, а также для разложения многочленов на множители. Использовать различные преобразования целых выражений при решении уравнений, доказательстве тождеств, в задачах на делимость, в вычислении значений некоторых выражений с помощью калькулятора |
Разность квадратов. Сумма и разность кубов | 6 |
Контрольная работа №7 | 1 |
Преобразование выражений | 6 |
Контрольная работа №8 | 1 |
Глава VI. Системы линейных уравнений. | 16 | Линейные уравнения с двумя переменными и их системы | 5 | Определять является ли пара чисел решением данного уравнения с двумя переменными. Находить путём перебора целые решения линейного уравнения с двумя переменными. Строить график уравнения ах+by=c, гдеа≠0 или b≠0. Решать графическим способом системы линейных уравнений с двумя переменными. Применять способ подстановки и способ сложения при решении систем линейных уравнений с двумя переменными. Решать текстовые задачи, используя в качестве алгебраической модели систему уравнений. Интерпретировать результат, полученный при решении системы |
Решение систем линейных уравнений | 10 |
Контрольная работа № 9 | 1 |
Повторение | 6 | Повторение курса алгебры 7 класса | 3 | Выполнять простейшие преобразования выражений: приводить подобные слагаемые, раскрывать скобки в сумме или разности выражений. Вычислять значения выражений вида an , где a- произвольное число,n- натуральное число, устно и письменно, а также с помощью калькулятора. Доказывать справедливость формул сокращённого умножения, применять их в преобразовании целых выражений в многочлены, а также для разложения многочленов на множители. Применять способ подстановки и способ сложения при решении систем линейных уравнений с двумя переменными |
Итоговый зачёт | 1 |
Итоговая контрольная работа | 2 |
Итого: | | Контрольных работ | 8 |
| | КДР | |
Всего: | | | 102 | |
8 класс |
Глава I. Рациональные дроби | 23 | Рациональные дроби и их свойства | 5 | Формулировать основное свойство рациональной дроби и применять его для преобразования дробей. Выполнять сложение, вычитание, умножение и деление рациональных дробей, а также возведение дроби в степень. Выполнять различные преобразования рациональных выражений, доказывать тождества. Знать свойства функции y= , гдеk≠0, и уметь строить её график. Использовать компьютер для исследования положения графика в координатной плоскости в зависимости от k |
Сумма и разность дробей | 6 |
Контрольная работа №1 | 1 |
Произведение и частное дробей | 10 |
Контрольная работа №2 | 1 |
Глава II. Квадратные корни | 19 | Действительные числа | 2 | Приводить примеры рациональных и иррациональных чисел. Находить значения арифметических квадратных корней, используя при необходимости калькулятор. Доказывать теоремы о корне из произведения и дроби, тождество = |a|, применять их в преобразованиях выражений. Освобождаться от иррациональности в знаменателях дробей вида , . выносить множитель за знак корня и выносить множитель под знак корня. Использовать квадратные корни для выражения переменных из геометрических и физических формул. Строить график функции y= и иллюстрировать на графике её свойства |
Арифметический квадратный корень | 5 |
Свойства арифметического квадратного корня | 3 |
Контрольная работа №3 | 1 |
Применение свойства арифметического квадратного корня | 7 |
Контрольная работа №4 | |
Глава III. Квадратные уравнения | 21 | Квадратное уравнение и его корни | 10 | Решать квадратные уравнения. Находить подбором корни квадратного уравнения, используя теорему Виета. Исследовать квадратные уравнения по дискриминанту и коэффициентам. Решать дробные рациональные уравнения, сводя решение таких уравнений с последующим исключением посторонних корней. Решать текстовые задачи, используя квадратные и дробные уравнения |
Контрольная работа №5 | 1 |
Дробно-рациональные уравнения | 9 |
Контрольная работа №6 | 1 |
Глава IV. Неравенства | 20 | Числовые неравенства и их свойства | 8 | Формулировать и доказывать свойства числовых неравенств. Использовать аппарат неравенств для оценки погрешности и точности приближения. Находить пересечения и объединение множеств, в частности числовых промежутков. Решать линейные неравенства. Решать системы линейных неравенств, в том числе таких, которые записаны в виде двойных неравенств |
Контрольная работа №7 | |
Неравенства с одной переменной и их системы | 10 |
Контрольная работа №8 | 1 |
Глава V. Степень с целым показателем. Элементы статистики | 11 | Степень с целым показателем и её свойства | 6 | Знать определение и свойства степени с целым показателем. Применять свойства степени с целым показателем при выполнении вычислений и преобразований выражений. Использовать запись чисел в стандартном виде для выражения и сопоставления размеров объектов, длительности процессов в окружающем мире. Приводить примеры репрезентативной и нерепрезентативной выборки. Извлекать информацию из таблиц частот и организовывать информацию в виде таблиц частот, строить интервальный ряд. Использовать наглядное представление статистической информации в виде столбчатых и круговых диаграмм, полигонов, гистограмм |
Контрольная работа №9 | 1 |
Элементы статистики | 4 |
Повторение | 8 | Повторение курса алгебры 8 класса | 5 | Выполнять различные преобразования рациональных выражений, доказывать тождества. Освобождаться от иррациональности в знаменателях дробей вида , . выносить множитель за знак корня и выносить множитель под знак корня. Строить график функции y= и иллюстрировать на графике её свойства. Решать линейные неравенства. Решать системы линейных неравенств, в том числе таких, которые записаны в виде двойных неравенств. Применять свойства степени с целым показателем при выполнении вычислений и преобразований выражений |
Итоговый зачёт | 1 |
Итоговая контрольная работа | 2 |
Итого: | | Контрольных работ | 10 | |
| | КДР | | |
Всего: | | | 102 | |
9 класс |
Глава I. Квадратичная функция | 22 | Функции и их свойства | 5 | Вычислять значения функции, заданной формулой, а также двумя и тремя формулами. Описывать свойства функций на основе их графического представления. Интерпретировать графики реальных зависимостей. Показывать схематически положение на координатной плоскости графиков функцийy=ax2, y=ax2+n, y=a(x-m)2. Строить график функции y=ax2+bx+c, уметь указывать координаты вершины параболы, её ось симметрии, направление ветвей параболы. Изображать схематически график функции y=xnс чётным и нечётным n. Понимать смысл записей вида , и т.д., где а – некоторое число. Иметь представление о нахождении корней n-й степени с помощью калькулятора |
Квадратный трёхчлен | 4 |
Контрольная работа №1 | 1 |
Квадратичная функция и её график | 8 |
Степенная функция. Корень п-ой степени. | 3 |
Контрольная работа №2 | 1 |
Глава II. Уравнения и неравенства с одной переменной | 14 | Уравнения с одной переменной | 8 | Решать уравнения третьей и четвёртой степени с помощью разложения на множители и введения вспомогательных переменных, в частности решать биквадратные уравнения. Решать дробные рациональные уравнения, сводя их к целым уравнениям с последующей проверкой корней. Решать неравенства второй степени, используя графические представления. Использовать метод интервалов для решения несложных рациональных неравенств |
Неравенства с одной переменной | 5 |
Контрольная работа №3 | 1 |
Неравенства с одной переменной | 5 |
Контрольная работа №3 | 1 |
Глава III. Уравнения и неравенства с двумя переменными | 17 | Уравнение с двумя переменными и их системы | 10 | Строить графики уравнений с двумя переменными в простейших случаях, когда графиком является прямая, парабола, гипербола, окружность. Использовать их для графического решения систем уравнений с двумя переменными. Решать способом подстановки системы двух уравнений с двумя переменными, в которых одно уравнение первой степени, а другое – второй степени. Решать текстовые задачи, используя в качестве алгебраической модели систему уравнений второй степени с двумя переменными; решать составленную систему, интерпретировать результат |
Неравенства с двумя переменными и их системы | 6 |
Контрольная работа №4 | 1 |
Глава IV. Арифметическая и геометрическая прогрессии | 15 | Арифметическая прогрессия | 7 | Применять индексные обозначения для членов последовательностей. Приводить примеры задания последовательностей формулой n-го члена и рекуррентной формулой. Выводить формулы n-го члена арифметической прогрессии и геометрической прогрессии, суммы первый n членов арифметической и геометрической прогрессий, решать задачи с использованием этих формул. Доказывать характеристическое свойство арифметической и геометрической прогрессий. Решать задачи на сложные проценты, используя при необходимости калькулятор |
Контрольная работа №5 | 1 |
Геометрическая прогрессия | 6 |
Контрольная работа №6 | 1 |
Глава V. Элементы статистики и теории вероятностей | 13 | Элементы комбинаторики | 9 | Выполнить перебор всех возможных вариантов для пересчёта объектов и комбинаций. Применять правило комбинаторного умножения. Распознавать задачи на вычисление числа перестановок, размещений, сочетаний и применять соответствующие формулы. Вычислять частоту случайного события. Оценивать вероятность случайного события с помощью частоты, установленной опытным путём. Находить вероятность случайного события на основе классического определения вероятности. Приводить примеры достоверных и невозможных событий |
Начальные сведения теории вероятностей | 3 |
Контрольная работа №7 | 1 |
Повторение. | 21 | Повторение курса алгебры 7-9 класса | 19 | Описывать свойства функций на основе их графического представления. Интерпретировать графики реальных зависимостей. Показывать схематически положение на координатной плоскости графиков функцийy=ax2, y=ax2+n, y=a(x-m)2. Строить график функции y=ax2+bx+c, уметь указывать координаты вершины параболы, её ось симметрии, направление ветвей параболы. Решать неравенства второй степени, используя графические представления. Использовать метод интервалов для решения несложных рациональных неравенств. Использовать их для графического решения систем уравнений с двумя переменными. Решать способом подстановки системы двух уравнений с двумя переменными, в которых одно уравнение первой степени, а другое – второй степени. Решать текстовые задачи, используя в качестве алгебраической модели систему уравнений второй степени с двумя переменными; решать составленную систему, интерпретировать результат |
Итоговая контрольная работа | 2 |
Итого: | | Контрольных работ | 8 | |
| | КДР | | |
Всего | | | 102 | |
Всего часов курса алгебры 7-9 класса | 306 | |
| | | | |
СОГЛАСОВАНО СОГЛАСОВАНО
Протокол заседания Зам. директора по УВР
МО учителей №___ __________________
от ____________2017 г. О.Е. Гаврющенко
Руководитель МО «___» __________2017 г.
_________________
(ф.и.о.)