СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по алгебре 9 класс

Категория: Алгебра

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Рабочая программа по алгебре 9 класс»

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ

УЧЕБНОГО ПРЕДМЕТА


Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:


Личностные результаты освоения образовательной программы:

  • воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

  • ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

  • умение контролировать процесс и результат учебной и математической деятельности;

  • критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты освоения образовательной программы:

  • умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

  • умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

  • умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

  • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

  • развитие компетентности в области использования информационно - коммуникационных технологий;

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических задач, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

  • умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты освоения образовательной программы:

  • осознание значения математики для повседневной жизни человека;

  • представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;

  • владение базовым понятийным аппаратом по основным разделам содержания;

  • систематические знания о функциях и их свойствах;

  • практически значимые математические умения и навыки, их применение к решению математических и нематематических задач предполагающее умения:

  • выполнять вычисления с действительными числами;

  • решать уравнения, неравенства, системы уравнений и неравенств;

  • решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, систем уравнений и неравенств;

  • использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;

  • проверить практические расчёты: вычисления с процентами, вычисления с числовыми последовательностями, вычисления статистических характеристик, выполнение приближённых вычислений;

  • выполнять тождественные преобразования рациональных выражений;

  • выполнять операции над множествами;

  • исследовать функции и строить их графики;

  • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой);

  • решать простейшие комбинаторные задачи.

























СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА


    1. Квадратичная функция


Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, ее свойства и график. Степенная функция.

Основная цель - расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции - функций у = ах2+ b, у = а (х - т)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приемы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хn при четном и нечетном натуральном показателе п. Вводится понятие корня п-ой степени.


    1. Уравнения и неравенства с одной переменной.


Целое уравнение и его корни. Биквадратные уравнения. Дробные рациональные уравнения. Решение неравенств второй степени с одной переменной. Решение неравенств методом интервалов.

Основная цель - систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с  О или ах2 + bх + с  О, где а ≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приёмами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + bх + c 0 или ах2 + bх + с а ≠ 0, осуществляется с опорой на введения о графике квадратичной функции (направление ветвей параболы, ее расположение относительно оси Ох).

Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

    1. Уравнения и неравенства с двумя переменными


Уравнение с двумя переменными и его график. Графический способ решения систем уравнений. Решение систем содержащих одно уравнение первой, а другое второй степени. Решение текстовых задач методом составления систем. Неравенства с двумя переменными. Системы неравенств с двумя переменными.

Основная цель - выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменное и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.



    1. Арифметическая и геометрическая прогрессии.


Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы первых п членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель - дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых п членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.


    1. Элементы комбинаторики и теории вероятностей


Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Основная цель - ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

Повторение

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса).



































ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С УКАЗАНИЕМ КОЛИЧЕСТВА ЧАСОВ, ОТВОДИМЫХ НА ОСВОЕНИЕ КАЖДОЙ ТЕМЫ

Название раздела (темы, главы) с указанием содержания материала

Количество часов

Основные виды учебной деятельности

Квадратичная функция

1. Функции и их свойства

2. Квадратный трёхчлен

Контрольная работа № 1

3. Квадратичная функция и её график

4. Степенная функция. Корень n-й степени

Контрольная работа № 2

22

5

4

1


8


3

1


Вычислять значения функций, заданной формулой, а также двумя и тремя формулами. Описывать свойства функций на основе их графического представления. Интерпретировать графики реальных зависимостей. Показывать схематически положение на координатной плоскости графиков функций . Строить график функции , уметь указывать координаты вершины параболы, её ось симметрии, направлении ветвей параболы.

Изображать схематически график функции с чётным и нечётным n. Понимать смысл записей вида и т.д., где - некоторое число. Иметь представление о нахождении корней n-й степени с помощью калькулятора.

Уравнения и неравенства с одной переменной

5. Уравнения с одной переменной

Контрольная работа № 3

6. Неравенства с одной переменной

Контрольная работа № 4

16



8

1


6

1

Решать уравнения третьей и четвёртой степени с помощью разложения на множители и введения вспомогательных переменных, в частности решать биквадратные уравнения. Решать дробные рациональные уравнения, сводя их к целым уравнениям с последующей проверкой корней. Решать неравенства второй степени, используя графические представления. Использовать метод интервалов для решения несложных рациональных неравенств.

Уравнения и неравенства с двумя переменными

7. Уравнения с двумя переменными и их системы

8. Неравенства с двумя переменными и их системы

Контрольная работа № 5

17



12


4

1

Строить графики функций с двумя переменными в простейших случаях, когда графиком является переменная, парабола, гипербола, окружность. Использовать их для графического решения систем уравнений с двумя переменными.

Решать способом подстановки системы двух уравнений с двумя переменными, в которых одно уравнение первой степени, а другое – второй степени.

Решать текстовые задачи, используя в качестве алгебраической модели систему уравнений второй степени с двумя переменными; решать составленную систему, интерпретировать результат.

Арифметическая и геометрическая прогрессии

9. Арифметическая прогрессия

Контрольная работа № 6

10. Геометрическая прогрессия

Контрольная работа № 7


15


7

1

6

1


Применять индексные обозначения для членов последовательностей. Приводить примеры задания последовательностей формулой n-го члена и рекуррентной формулой.

Выводить формулы n-го члена арифметической прогрессии и геометрической прогрессии, суммы первых n членов арифметической и геометрической прогрессий, решать задачи с использованием этих формул. Доказывать характеристическое свойство арифметической и геометрической прогрессии.

Решать задачи на сложные проценты, используя при необходимости калькулятор.

Элементы комбинаторики и теории вероятностей

11. Элементы комбинаторики

12. Начальные сведения из теории вероятностей

Контрольная работа № 8

13


9


3

1


Выполнить перебор всех возможных вариантов для пересчёта объектов и комбинаций. Применять правило комбинаторного умножения.

Распознаваться задачи на вычисление числа перестановок, размещений, сочетаний и применять соответствующие формулы.

Вычислять чистоту случайного события. Оценивать вероятность случайного события с помощью частоты, установленной опытным путём. Находить вероятность случайного события на основе классического определения вероятности. Приводить примеры достоверных и невозможных событий.

Повторение

Повторение материала за курс 9 класса

Итоговая контрольная работа

19


17


2








8