Урок № 27
Дата урока: 09.12.2019
Класс:8
Учитель: Аккиева Азизе Усеиновна
Тема урока: «Теорема Пифагора».
Цель урока:
Предметные: Дать понятие о теореме Пифагора, о многообразии способов ее доказательства, научиться применять теорему Пифагора для решения задач;
первичное применение теоремы для решения задач.
Метапредметные: развивать внимание, логическое мышление; внимание, память
Личностные: воспитание трудолюбия, усердия в достижении цели
План урока:
Организационный момент (1 мин.)
Устная работа (10 мин.)
Подготовительный этап (5 мин.)
Изучение нового материала (10 мин.)
Закрепление изученного материала ( решение задач) (10 мин.)
Подведение итога урока (1 мин.)
Домашнее задание (3 мин.)
Ход урока.
Организационный момент.
Учитель. Сегодня на уроке мы повторим какие виды треугольников вы знаете, подробней поговорим о прямоугольном треугольнике, докажем теорему Пифагора.
Устная работа.
Доска в начале урока.
Учитель. Какая геометрическая фигура называется треугольником?
Учитель. Перечислите виды треугольников в зависимости от сторон.
Учитель. Какой треугольник называется равнобедренным?
Учитель. Сформулируйте свойства равнобедренного треугольника.
Учитель. Есть ли на чертеже равнобедренный треугольник?
Учитель. Какой треугольник называется равносторонним?
Учитель. Перечислите виды треугольников в зависимости от углов.
Учитель. Какой треугольник называется тупоугольным?
Учитель. Какой треугольник называется остроугольным?
Учитель. Какой треугольник называется прямоугольным?
Учитель. Как называются стороны в прямоугольном треугольнике?
Учитель. Какую сторону называют катетом в прямоугольном треугольнике?
Учитель. Какую сторону называют гипотенузой в прямоугольном треугольнике?
Учитель. Сформулируйте свойства прямоугольного треугольника.
Подготовительный этап.
Учитель.
Начертите прямоугольный треугольник АВС с прямым углом С.
Измерьте длины его сторон
Вычислите, чему равен квадрат гипотенузы.
Найдите сумму квадратов катетов.
Какой можно сделать вывод?
Ученик. Квадрат гипотенузы равен сумме квадратов катетов.
Учитель. То, к чему мы пришли опытным путем, доказал древнегреческий ученый Пифагор в 6 в. до н. э. Он не открыл эту теорему (она была известна еще в Древнем Египте и Вавилоне), а нашел ее доказательство. Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под сильным влиянием египетской науки. Частный случай теоремы Пифагора — свойство треугольника со сторонами 3, 4 и 5 — был известен строителям пирамид задолго до рождения Пифагора, сам же он более 20 лет обучался у египетских жрецов. Сохранилась легенда, которая гласит, что доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам даже 100 быков. Это, однако, противоречит сведениям о моральных и религиозных воззрениях Пифагора. В литературных источниках можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всеми этим более правдоподобной можно считать следующую запись: «…и даже когда он открыл, что в прямоугольном треугольнике гипотенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».
Известно более 100 доказательств этой теоремы. Приведем только одно из них.
Изучение нового материала.
Учитель. Итак, тема сегодняшнего урока: «Теорема Пифагора».
Теорема:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Выделите в данной теореме условие и заключение.
Ученик. Условие: в прямоугольном треугольнике. Заключение: квадрат гипотенузы равен сумме квадратов катетов.
З
в
а
апись на доске:
А
в
а
с
с
Дано:
в
с
∆АВС;
с

С=90

;
В
С
в
а
а
с
АВ=с;
ВС=а;
в
а
АС=в;
Док-ть:
Учитель. Доказательство:
Достроим треугольник до квадрата со стороной
Площадь S этого квадрата равна
С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна
, и квадрата со стороной
, поэтому
Таким образом,
Теорема доказана.
Закрепление изученного материала (решение задач).
1. Задачи из учебника — полуустно (сделать чертеж, на нем отметить данные, записать краткое решение): №483(а,г), 484(б,г), 486(а,б).
2. Тренажер «Теорема Пифагора»
Итог урока.
Учитель. Сформулируйте теорему Пифагора.
Ученик. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Рефлексия.
Домашнее задание.
П. 54 прочитать;
Вопрос для повторения 8; задачи №483(б,в), 484(а,в), 486(в,г).
3