СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Золотое сечение

Категория: Математика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Золотое сечение»












Исследовательская работа по теме:


«Золотое сечение

в архитектуре»











Автор работы: Сироткин Дмитрий

ученик 10 класса

МБОУ Выездновская СШ








р.п.Выездное, 2007 г.

Введение

Феномен золотого сечения известен человечеству очень давно.

Его тайну пытались осмыслить Платон, Евклид, Пифагор, Леонардо да Винчи, Кеплер и многие другие крупнейшие мыслители человечества. Они неразрывно связывали золотое сечение с понятием всеобщей гармонии, пронизывающей вселенную от микромира до макрокосмоса.

Классическими проявлениями золотого сечения являются предметы обихода, скульптура и архитектура, математика, музыка и эстетика. В предыдущем столетии с расширением области знаний человечества резко увеличилось количество сфер, где наблюдается феномен золотой пропорции. Это биология и зоология, экономика, психология, кибернетика, теория сложных систем, и даже геология и астрономия.

Ежегодно издаются несколько книг посвященных этой проблеме, постоянно расширяя область приложения золотого сечения. Авторы этих исследований связывают золотое сечение с такими несовместимыми, на первый взгляд понятиями, как красота, асимметрия, рекурсия, самоорганизация и пропорция. За последние годы появились интересные интернет-сайты посвященные золотому сечению.

Живая природа построена на простых принципах и может быть описана элементарными моделями. В этой работе мы хотим сделать попытку системного анализа феномена золотого сечения и высказать несколько предположений, позволяющих объяснить всеобщий характер золотой пропорции.

Гипотеза: Золотое сечение является отображением окружающегося мира через цепочку глаз – мозг – рука.

Объект исследования: наличие Золотого сечения в архитектуре.

Предметы исследования: архитектура.

Цели: поиск закономерностей золотого сечения в архитектуре.

Задачи: найти определение Золотого сечения, изучить литературу, связанную с Золотым сечением, провести эксперименты, разработать собственный проект с элементами Золотого сечения, сделать выводы.

Было найдено определение Золотого сечения, изучена литература, связанная с Золотым сечением, проведены эксперименты, разработан собственный проект с элементами Золотого сечения, были сделаны выводы.

В ходе исследования были выявлены следующие результаты: закономерности Золотого сечения заложены в подсознании человека, использовались и используются архитекторами в своих работах.

Мы исследовали Золотое сечение в архитектуре, нами были выявлены признаки Золотого сечения в разных эпохах. Так же по результатам проведенного исследования мы подтвердили гипотезу, что Золотое сечение – отображение окружающегося мира через цепочку глаз – мозг – рука.


Определение

В математике пропорцией (лат. proportio) называют равенство двух отношений: a:b=c:d
Отрезок прямой АВ можно разделить на две части следующими способами:

  • на две равные части – АВ : АС = АВ : ВС;

  • на две неравные части в любом отношении (такие части пропорции не образуют);

  • таким образом, когда АВ : АС = АС : ВС.


Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a:b=b:c или с:b=b:а.

Рис. 1. Геометрическое изображение золотой пропорции.


Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка по золотому сечению. BC = 1/2 AB; CD = BC


Из точки В восстанавливается перпендикуляр, равный половине АВ. Полученная точка С соединяется отрезком с точкой А. На отрезке AC от точки С откладывается отрезок, равный ВС, заканчивающийся точкой D. На отрезке AB от точки А откладываем отрезок АЕ, равный отрезку AD. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением:

x2x – 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.



История Золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог “Тимей” посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в “Началах” Евклида. Во 2-й книге “Начал” дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам “Начал” Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи. «Пусть никто не будучи математиком, не посмеет читать мои труды.». Он, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась “О перспективе в живописи”. Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли “Божественная пропорция” с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее “божественную суть” как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. “Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать”.

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя “Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности”.

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M.

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы “вместе с водой выплеснули и ребенка”. Вновь “открыто” золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд “Эстетические исследования”. С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях “математической эстетикой”.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название “Золотое деление как основной морфологический закон в природе и искусстве”. В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.





















Золотое сечение в архитектуре

" Красота должна отвечать строгому числу" Л.Б.Альберти


Перенесемся в эпоху классической Греции. Великолепные памятники архитектуры оставили нам зодчие древней Греции. Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). Храм Афины - Парфенон был построен в честь победы эллинов над персами. Для создания гармонической композиции на холме его строители даже увеличили холм в южной части, соорудив для этого мощную насыпь .


Как указывает Г.И. Соколов, протяженность холма перед Парфеноном, длины храма Афины и участка Акрополя за Парфеноном соотносятся как отрезки золотой пропорции. При взгляде на Парфенон у места расположения монументальных ворот при входе в город (пропилеи) отношения массива скалы у храма также соответствует золотой пропорции. Таким образом, золотая пропорция была использована уже при создании композиции храмов на священном холме.



Рис. 3. Парфенон.


Рис. 4. Схема здания Парфенона.


На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618...

На плане пола Парфенона также можно заметить "золотые прямоугольники":


Рис. 5. План пола Парфенона.



Золотое соотношение мы можем увидеть и в здании собора Парижской Богоматери (Нотр-дам де Пари), и в пирамиде Хеопса: Рис.6.Нотр-дам де Пари. Рис. 7. Пирамида Хеопса.

Рис. 8. Схема пирамиды Хеопса.


Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Что касается пирамид, не только египетские пирамиды построены в соответствии с совершенными пpопоpциями золотого сечения.

Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скорее неразрешимая головоломка из числовых комбинаций. Замечательные изобретательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими при возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий.

Ключ к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь треугольника

356 x 440 / 2 = 78320


Площадь квадрата

280 x 280 = 78400


Длина грани пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина грани, деленная на высоту, приводит к соотношению Ф=0,618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) - это числа из последовательности Фибоначчи.

Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=0,618. Современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью - передать знания, которые они хотели сохранить для грядущих поколений.



Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 0,618 играет центральную роль.

Не только египетские пирамиды построены в соответствии с совершенными пропорциями золотого сечения, то же самое явление обнаружено и у мексиканских пирамид. Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми общего происхождения.

На поперечном сечении пирамиды видна форма, подобная лестнице. В первом ярусе 16 ступеней, во втором 42 ступени и в третьем - 68 ступеней.

Эти числа основаны на соотношении Фибоначчи следующим образом:

16 x 1.618 = 26

16 + 26 = 42

26 x 1.618 = 42

42 + 26 = 68


Знаменитый русский архитектор М.Ф.Казаков широко использовал в своем творчестве золотое сечение. Его талант был многогранным, но в большей степени он проявился в многочисленных проектах жилых домов и усадеб. Например, золотое сечение можно встретить в архитектуре здания бывшего сената в Кремле, Дворца в Петровском Алабине и Голицынской больницы в Москве, которая в настоящее время называется Первой Клинической больницей имени Н.И.Пирогова.





Рис. 9. Здание Бывшего сената в Кремле. Рис. 10. Голицынская больница



Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 году. Многие   высказывания зодчего заслуживают внимания. О своем любимом искусстве Баженов говорил: "Архитектура - главнейшие имеет три предмета: красоту, спокойствие и прочность здания. К достижению сего служит руководством знание пропорции, перспективы, механики или вообще физики, а всем им общим вождем является рассудок".


Рис. 11 Дом Пашковых

Шедеврами архитектуры являются многие русские храмы, которые строились на протяжении нескольких столетий. В плане стены храмов или опорные колонны обычно вписываются в квадрат или прямоугольник со сторонами 1:2. Рассмотрим подробнее некоторые из них. Одним из бесспорных шедевров русского зодчества является церковь Вознесения в Коломенском. В основу пропорции этого храма положен прямоугольник со сторонами 1 и -1, который состоит из двух прямоугольников золотого сечения. Все элементы церкви от плана до любого членения фасада подчинены двум отношениям: повторению размеров (1:1) и отношению 1: (-1)=0,809.



Рис. 12 Церковь Вознесения в Коломенском

Нижняя часть креста делится полумесяцем на нижнюю и верхнюю часть как (-1)/2=0,618. На гранях шатра имеется выполненная из белого камня сетка ромбического рисунка, подчеркивающая движение вверх. Ромбы делят грань шатра на отрезки, связанные попарно: внизу - 1 : (-1) и вверху (-1) : 2

Трудно найти человека, который бы не знал и не видел собора Василия Блаженного на Красной площади. Храм этот особенный; он отличается удивительным разнообразием форм и деталей, красочных покрытий; ему нет равных в нашей стране. Архитектурное убранство всего собора продиктовано определенной логикой и последовательностью развития форм. Исследуя его, пришли к выводу о преобладании в нем ряда золотого сечения. Если принять высоту собора за единицу, то основные пропорции, определяющие членение целого на части, образуют ряд золотого сечения: 1: j: j 2: j 3: j 4: j 5: j 6: j 7, где j =0,618. В этом членении и заключена основная архитектурная идея создания собора, единая для всех восьми куполов, объединяющая их в одну композицию.



Рис. 13. Храм Василия Блаженного.



 Рис. 14. Схема Храма Василия Блаженного.
























Библиография:


1. Д. Пидоу. Геометрия и искусство. М. Мир 1990

2. Васютинский Н. Н. Золотая пропорция. М. 1990

3. Гика М. Эстетика пропорций в природе и искусстве. М. 1936

4. Тимеринг Г. Е. Золотое сечение. СПб.1924

5. «Математика - Энциклопедия для детей» М.: Аванта +, 1998

6. Журнал «Математика в школе», 1994, № 2; № 3

7. http://www.abc-people.com/idea/zolotsech/

8. http://n-t.ru/tp/iz/zs.htm

9. http://tmn.fio.ru/works/04x/304/p3_4.htm

10. http://www.arstudia.ru/kazakov/2.html

11. http://e-project.redu.ru/mos/images/blds.htm






























Экспериментальная часть

Анкетирование

«Золотое сечение и восприятие изображений»


О способности зрительного анализатора человека выделять объекты, построенные по алгоритму золотого сечения, как красивые, привлекательные и гармоничные, известно давно. Золотое сечение дает ощущение наиболее совершенного единого целого. Формат многих книг соответствует золотому сечению. Оно выбирается для окон, живописных полотен и конвертов, марок, визиток. Человек в строении предметов, а также в последовательности событий подсознательно находит элементы золотой пропорции.

Гипотеза: Золотое сечение является отображением окружающегося мира через цепочку глаз – мозг – рука.


  1. Анкетный метод.

С помощью анкетного метода изучаются различные стороны психической деятельности человека на основе массового опроса.

Мы предлагали респондентам выбрать из 3 фигур наиболее понравившуюся (рис.13). На выбор нами были предложены два прямоугольника и квадрат: квадрат (40:40 мм), прямоугольник "золотого сечения" с отношением сторон (31:50 мм) и прямоугольник с удлиненными пропорциями (26:60 мм).


Рис. 15. Опрос.


  1. Метод эксперимента

Этот метод представляет искусственное создание психологических ситуаций и изучение того или иного психологического явления, процесса, развивающихся в этой ситуации. Создавая специальные условия для эксперимента, обеспечивающие проявление психического процесса, свойства, экспериментатор получает возможность, проводя исследование с разными испытуемыми в одинаковых условиях, установить возрастные и индивидуальные особенности развития психических процессов у испытуемых. По своему усмотрению экспериментатор может менять условия эксперимента, что открывает широкие возможности для нахождения и обоснования наиболее эффективных приемов в работе.


Мы предлагали испытуемым изобразить прямоугольники. Всего в исследовании участвовало 150 человек. Обработка результатов показала, что наша гипотеза подтвердилась, 49% опрашиваемых отдали предпочтение прямоугольникам в стиле Золотого сечения. Предпочтение пропорций связано с функциональной асимметрией полушарий головного мозга. Когда работает одно правое полушарие, - для человека предпочтительны формы, близкие к Золотому сечению. Когда работает одно левое полушарие, - человек предпочитает сильно вытянутые формы, способствующие аналитическому последовательному «прочтению - восприятию» отдельных аспектов и фрагментов изображения как текста.

Таким образом, наша гипотеза о том, что Золотое сечение является отображением окружающегося мира через цепочку глаз – мозг – рука, подтвердилась.


Результаты приведены в таблице №1.



группы

Классы

кол-во испытуемых

Возраст, лет

% людей выбравших Золотое сечение

1

5-9

50

11-15

40%

2

10-11

50

16-18

48%

3

Взрослые

50

от 30

60%


Таблица № 1


Из таблицы видно, что с возрастом растет количество людей, выбирающих Золотое сечение. И после 30 лет их становится больше.

Вывод: Золотое сечение является отображением окружающегося мира через цепочку глаз – мозг – рука. И с возрастом увеличивается количество людей, выбирающих Золотую пропорцию.























Заключение


Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.


Мы попытались прямоугольники Золотого сечения наложить на фасад здания нашей школы, преследуя при этом цель, чтобы фасад нашей школы выглядел так же привлекательно снаружи как и ее содержание изнутри. (см. приложение 2, рис. 18).


ОБЩИЕ ВЫВОДЫ:

  • Золотое сечение – это один из основных основополагающих принципов природы;

  • Человеческое представление о красивом явно сформировалось под влиянием того, какой порядок и гармонию человек видит в природе.

  • Закономерности Золотого сечения заложены в подсознании человека, использовались и используются архитекторами в своих работах.

  • Золотое сечение является отображением окружающегося мира через цепочку глаз – мозг – рука.

  • С возрастом увеличивается количество людей, выбирающих Золотую пропорцию.



  • Также Золотое сечение имеет большое применение в нашей жизни. На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения. В гидротехнике по золотой спирали изгибают трубу, подводящую поток воды к лопастям турбины. Благодаря этому напор воды используется с наибольшей производительностью.


Человек – венец творения природы… Установлено, что золотые отношения можно найти и в пропорциях человеческого тела. Кроме того, человек сам является творцом, создаёт замечательные произведения искусства, в которых просматривается золотая пропорция.














ПРИЛОЖЕНИЕ 1


Результаты анкетирования


















Рис. 16. Результаты опроса 1.



Рис. 17. Результаты опроса 2.















Содержание


ВВЕДЕНИЕ………………………...…………………...................................................................................3


Определение Золотого сечения………………………………………………………………………..…………………….................3

История Золотого сечения……………………………………………………………………………………………………...…4


ЗОЛОТОЕ СЕЧЕНИЕ В АРХИТЕКТУРЕ…...………..………………………….…..…………………………………………..……7

Парфенон в Золотом сечении…………………………………………………………………………...……………………….......7

Собор Парижской богоматери, пирамида Хеопса и Золотое сечение………………………………………………………………………………………………………...9

Другие пирамиды и архитектурные сооружения в пропорциях Золотого сечения……………………………………………………………………………………………………….10


БИБЛИОГРАФИЯ………………………………………………………………………………………...15


ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ................................................……………………………………………….……………………...16

Анкетирование «Золотое сечение и восприятие изображений»……………………………………………………..…………………………………………16


ЗАКЛЮЧЕНИЕ………………………………………………………………………………………...….18


ПРИЛОЖЕНИЕ 1………………………………………………………………………………………….19

Результаты анкетирования………………………………………………………………………………….……………19


ПРИЛОЖЕНИЕ 2………………………………………………………………………………………….21

Собственный проект в стиле Золотого сечения………………………………………………………...……………………………………………..21














ПРИЛОЖЕНИЕ 2


Наш собственный проект.




2,9

2

13,2



5,1





19


11,8




4,5

21,4

2,5




68,6






Рис. 18. Собственный проект.

21