СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Нахождение точек максимума и минимума функции

Категория: Математика

Нажмите, чтобы узнать подробности

Факультативное занятие в 11 классе. Решение заданий ЕГЭ  № 12, нахождение точек максимума и минимума функции, наибольших и наименьших значений функции с помощью производной

Просмотр содержимого документа
«Нахождение точек максимума и минимума функции»



Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №6 с. Солдато-Александровского Советского района» Ставропольского края









Факультативное занятие по теме: «Нахождение точек максимума и минимума функции, наибольших и наименьших значений функции с помощью производной».

















Учитель Григорьева Т.А.

2019-2020 учебный год





Факультативное занятие по теме: «Нахождение точек максимума и минимума функции, наибольших и наименьших значений функции с помощью производной».

Цель - развивать у учащихся навыки применения теоретических знаний по теме «Нахождение точек максимума и минимума функции, наибольших и наименьших значений функции с помощью производной» для решения заданий единого государственного экзамена.

Задачи

Образовательные: обобщить и систематизировать знания учащихся по теме «Нахождение точек максимума и минимума функции, наибольших и наименьших значений функции с помощью производной», рассмотреть прототипы задач ЕГЭ по данной теме, предоставить обучающимся возможность проверить свои знания при самостоятельном решении заданий.

Развивающие: способствовать развитию памяти, внимания, навыков самооценки и самоконтроля; формированию основных ключевых компетенций (сравнение, сопоставление, контроль и оценивание своей деятельности, корректировка возникших трудностей).

Воспитательные: способствовать формированию у учащихся ответственного отношения к учению.

Ход занятия

1.      Организационный момент

Всем известно высказывание «Мал золотник да дорог». Одним из таких «золотников» в математике является производная. Производная применяется при решении многих практических задач математики, физики, химии, экономики и других дисциплин. Она позволяет решать задачи просто, красиво, интересно.

Тема нашего занятия « Нахождение точек максимума и минимума функции, наибольших и наименьших значений функции с помощью производной».

2. Решение заданий ЕГЭ.

Исследование сложных функций

1. Найдите точку максимума функции

Перед нами сложная функция

Так как функция монотонно возрастает, точка максимума функции будет при том же , что и точка максимума функции А ее найти легко.

при . В точке производная меняет знак с «плюса» на «минус». Значит, — точка максимума функции .

Заметим, что точку максимума функции можно найти и без производной.

Графиком функции является парабола ветвями вниз, и наибольшее значение достигается в вершине параболы, то есть при

Ответ: - 4.

2. Найдите абсциссу точки максимума функции

Напомним, что абсцисса — это координата по

Снова сложная функция. Применяем тот же прием, что и в предыдущей задаче.

Так как функция монотонно возрастает, точка максимума функции является и точкой максимума функции

Это вершина квадратичной параболы

Нахождение наибольших и наименьших значений функций на отрезке

3. Найдите наибольшее значение функции на отрезке

Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке.

Будем искать точку максимума функции с помощью производной. Найдем производную и приравняем ее к нулю.

Найдем знаки производной.

В точке производная равна нулю и меняет знак с "+" на "-". Значит, x = - 2 — точка максимума функции . Поскольку при функция убывает, В этой задаче значение функции на концах отрезка искать не нужно.

Ответ: 12

4. Найдите наименьшее значение функции на отрезке

Найдем производную функции и приравняем ее к нулю.

при

Найдем знаки производной.

Точка — точка минимума функции . Точка не лежит на отрезке Поэтому

 и  Значит, наименьшее значение функции на отрезке достигается при Найдем это значение.

Ответ: -11.

5. Найдите наименьшее значение функции на отрезке

Иногда перед тем, как взять производную, формулу функции полезно упростить.

Мы применили формулу для логарифма произведения. при

Если  то  Если , то 

Значит, — точка минимума функции . В этой точке и достигается наименьшее значение функции на отрезке

Ответ: 4

6. Найдите наибольшее значение функции на отрезке

Найдем производную функции

Приравняем производную к нулю:

. Поскольку если

Найдем знаки производной на отрезке

При знак производной меняется с «плюса» на «минус». Значит, — точка максимума функции

Мы нашли точку максимума, но это еще не все. Сравним значения функции в точке максимума и на конце отрезка, то есть при и

Мы нашли, что

Заметим, что если вам попадется такая задача в первой части ЕГЭ по математике, то находить значение функции при не обязательно. Как мы видим, это значение — число иррациональное. А в первой части ЕГЭ по математике ответом может быть только целое число или конечная десятичная дробь.

Ответ: 4

7. Найдите наименьшее значение функции на отрезке [0;2].

Снова сложная функция. Запишем полезные формулы:

Найдем производную функции

если Тогда

 При знак производной меняется с «минуса» на «плюс». Значит, — точка минимума функции

10. Найдите наибольшее значение функции на отрезке

Как всегда, возьмем производную функции и приравняем ее к нулю.

По условию, . На этом отрезке условие выполняется только для Найдем знаки производной слева и справа от точки

В точке производная функции меняет знак с «плюса» на «минус». Значит, точка — точка максимума функции . Других точек экстремума на отрезке функция не имеет, и наибольшее значение функции на отрезке достигается при

Ответ: 12.

8.Найдите наименьшее значение функции на отрезке

Найдем производную функции и приравняем ее к нулю.  — нет решений.

Что это значит? Производная функции не равна нулю ни в какой точке. Это значит, что знак производной в любой точке одинаков, а функция не имеет экстремумов и является монотонной.

Поскольку , получим, что  для всех , и функция монотонно возрастает при

Значит, наименьшее свое значение функция принимает в левом конце отрезка , то есть при

Ответ: 6

3. Самостоятельная работа:

1. Найдите точку минимума функции

Ответ: 1.

2. Найдите точку максимума функции

Ответ: 17.

Итог.

-Мне приятно было с вами работать, и надеюсь, что полученные знания, вы сможете успешно применить не только при сдаче ЕГЭ, но и в дальнейшей своей учёбе.

- Закончить занятие мне хотелось бы словами Пьера Лапласа: «То, что мы знаем, - ограниченно, а то чего мы не знаем, - бесконечно». Поэтому обогащайтесь знаниями, чаще находитесь в этой бесконечности.

Желаю успехов в подготовке к ЕГЭ!