СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа

Категория: Математика

Нажмите, чтобы узнать подробности

Геометрия 10-11 класс Атанасян Л.С. (базовый уровень).

Просмотр содержимого документа
«Рабочая программа»


Рабочая программа учебного предмета геометрии 11 класса общеобразовательной школы составлена к учебнику «Геометрия 10-11». Учебник под ред. Л.С.Атанасяна. Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.


Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.


Общая характеристика учебного предмета

При изучении курса математики на базовом уровне продолжается и получает развитие содержательная линия: «Геометрия». В рамках указанной содержательной линии решаются следующие задачи:

-изучение свойств пространственных тел,

- формирование умения применять полученные знания для решения практических задач.



Цели

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.


Общеучебные умения, навыки и способы деятельности


В ходе освоения содержания геометрического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

-построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

-выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале;

- выполнения расчетов практического характера;

-использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

-самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

-проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

-самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.


В рабочей программе количество часов, отводимое на изучение геометрии в 11 классе полностью совпадает с количеством часов, которое приводится в примерной программе по предмету.
































ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения геометрии на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.














Содержание учебного предмета геометрии 11 класса

  1. часов)



  1. Метод координат в пространстве. Скалярное произведение векторов (12 часов).

  • Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

  • Векторы. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Длина вектора в координатах, угол между векторами в координатах. Коллинеарные векторы, коллинеарность векторов в координатах.

  1. Цилиндр, конус, шар (13 часов).



  • Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

  • Шар и сфера, их сечения, касательная плоскость к сфере.

  1. Объемы тел. (17 часов).



  • Понятие об объеме тела. Отношение объемов подобных тел.

  • Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса.

  • Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

  1. Повторение. Решение задач (26 часов).



















Изучение тем программы по четвертям.

(2 учебных часа в неделю, всего 68 часов)



Четверть

Примерные сроки

Темы программы

Количество часов

Количество контрольных работ

I

5.09. – 31.10.



2.11.




  1. Метод координат в пространстве. Скалярное произведение векторов.


  1. Цилиндр, конус, шар.


17



1

№1, №2



II

14.11. – 28.12.



Цилиндр, конус, шар (продолжение).

14




№3



III






11.01. – 23.01.

25.01. - 20.03.

Цилиндр, конус, шар (продолжение).


  1. Объёмы тел.





4

16



№4

№5

IV



3.04. – 17.04.





19.04. – 24.05.


Объёмы тел (продолжение).



  1. Повторение.



5





11

№6





Итоговая контр. работа



Итого



С 1.09. по 31.05.



4 темы



68

7



Календарно-тематическое планирование базового изучения учебного материала по геометрии 11 класса



№ п\п

Дата


Тема урока

Элементы содержания


Задание на дом

Требования к уровню подготовки учащихся


Тип урока

план

факт

Знать

Уметь


1

2

3

4

5

6

7

8


  1. Метод координат в пространстве. Скалярное произведение векторов. – 17 часов


1

1



Векторы в пространстве.

Определения длины вектора, коллинеарных векторов, равных векторов.

§1, пп.42-43, №403,

№407 (а,в,д)

Знать понятия вектора, длины вектора, коллинеарных векторов, равных векторов.

Уметь доказывать коллинеарность и равенство векторов.

Урок изучения нового материала

2

2



Метод координат на плоскости.

Координаты вектора, правила действия над векторами, заданными своими координатами.

§1 п.42,43 №408 №410, 413

Знать определение координат вектора; правила действия над векторами, заданными своими координатами.

Уметь находить координаты вектора, представ-ленного в виде алгебраической суммы данных векторов, координаты которых известны.

Комбиниро-ванный урок

3

3



Координаты точки и координаты вектора.

Понятия системы координат в пространстве, координат точки и вектора в пространстве.

§1 п.42- 44. в.1-7, стр.116 №419 №421 №422 (в)

Знать понятия системы координат в пространстве, координат точки и вектора в пространстве.

Уметь находить координаты вектора в пространстве.

Урок изучения нового материала

4

4



Координаты точки и координаты вектора.

Понятия системы координат в пространстве, координат точки и вектора в пространстве.

§1 №428(а,в,д), №426(а)

п.42- 44

Знать понятия системы координат в простран-стве, координат точки и вектора в пространстве.

Уметь находить координаты вектора в пространстве.

Урок закрепления знаний

5

5



Связь между координатами векторов и координатами точек.

Понятие радиус-вектора произвольной точки пространства. Нахождение координаты вектора по координатам точек конца и начала вектора.

§1 №417, №418(б), №419 (б), п. 44

Знать понятие радиус-векторов произвольной точки пространства; формулы для нахождения координат точек конца и начала вектора.

Уметь применять формулу для нахождения координат точек конца и начала вектора при решении задач.

Комбиниро-ванный урок

6

6



Простейшие задачи в координатах.

Формулы нахождения координат середины отрезка, длины вектора, расстояния между двумя точками.

§1 п.45, №421(в), №425 (б,г) №427

Знать формулы нахож-дения координат сере-дины отрезка, длины вектора, расстояния между двумя точками.

Уметь находить координаты середины отрезка, длину вектора, расстояние между двумя точками.

Урок изучения нового материала

7

7



Простейшие задачи в координатах.

Формулы нахождения координат середины отрезка, длины вектора, расстояния между двумя точками.

№435, №437, №438

§1 п.45

Знать формулы нахождения координат середины отрезка, длины вектора, расстояния между двумя точками.

Уметь находить координаты середины отрезка, длину вектора, расстояние между двумя точками.

Урок закрепления знаний

8

8



Контрольная работа №1 «Метод координат в пространстве».


Проверка знаний, умений и навыков по теме


Знать формулы нахождения координат середины отрезка, длины вектора, расстояния между двумя точками.

Уметь находить координаты точки и координаты вектора в пространстве.

Урок контроль

9

9



Угол между векторами. Скалярное произведение векторов.

Понятия угла между векторами, скалярного произведения векторов, свойства скалярного произведения, теорема о скалярном произведении векторов, заданными своими координатами.

§2 п.46-47, повторить табличные значения косинуса.№443 (б,г)

Знать понятие скалярного произведе-ния векторов, свойства скалярного произведе-ния, теорему о скаляр-ном произведении векторов, заданными своими координатами.

Уметь вычислять скалярное произведение векторов, находить угол между векторами.

Урок изучения нового материала

10

10



Скалярное произведение векторов.

Понятие скалярного произведения векторов, свойства скалярного произведения, теорема о скалярном произведении векторов, заданными своими координатами.

§2 №445(б,в), №450

п.46-47

Знать понятие скалярного произведе-ния векторов, свойства скалярного произведе-ния, теорему о скаляр-ном произведении векторов, заданными своими координатами.

Уметь вычислять скалярное произведение векторов, находить угол между векторами.

Урок закрепления знаний

11

11



Угол между прямыми.

Направляющий вектор. Формула для вычисления угла между прямыми.

§2 п.48

№464(б, д), №466(б), №468

Знать определение направляющего вектора, формулу для вычисления угла между прямыми.

Уметь вычислять угол между прямыми.

Урок изучения нового материала

12

12



Угол между прямой и плоскостью.

Понятия наклонной, проекции, перпендикуляра к плоскости, угла между прямой и плоскостью.


§2 Вопр.11-14 стр.116, п.46-48 №470(в), 476

Знать понятия наклонной, проекции, перпендикуляра к плоскости, угла между прямой и плоскостью.

Уметь вычислять угол между прямой и плоскостью.

Урок закрепления знаний

13

13



Центральная и осевая симметрия.

Отображение пространства на себя. Движение пространства. Центральная симметрия. Понятие осевой и зеркальной симметрии.

§3 п.49 - 51, №478(а), №486(б), №481(а)

Знать понятия отображения пространства на себя, движения пространства, центральной, осевой и зеркальной симметрии.


Уметь решать задачки на данную тему.

Урок изучения нового материала

14

14



Параллельный перенос. Поворот.

Понятия параллельного переноса и поворота.

§3 п.52 №484(б), №489(б)

Знать понятия параллельного переноса и поворота.

Уметь решать задачки на данную тему.

Урок изучения нового материала

15

15



Решение задач по теме «Скалярное произведение векторов».

Подготовка к контрольной работе. Решение задач на использование теории о скалярном произведении векторов и движении в пространстве.

п.46 – 52 № 485, 488.

Знать понятие скалярного произведения векторов; две формулы для нахождения скалярного произведения векторов; основные свойства скалярного произведения векторов.

Уметь решать задачки на данную тему.

Обобщение и систематиза-ция знаний

16

16



Контрольная работа №2 «Скалярное произведение векторов».


Проверка знаний, умений и навыков по теме

Задания нет

Знать теоретический материал §2 п.46-48.

Уметь решать задачи по данной теме.

Урок контроль

17

17



Зачет по теме «Метод координат в пространстве».

Карточки, содержащие основные вопросы теории и некоторые типичные задачи.

Задания нет

Проверка теоретических знаний по теме, выявление уровня усвоения основных геометрических понятий и умение применять их на практике.

Урок контроль теоретичес-ких знаний



  1. Цилиндр. Конус. Шар. - 19 часов


18

1



Цилиндр.

Понятие цилиндра, его элементов, формула площади поверхности цилиндра.

§1 п.53-54,вопр.1-4 стр.135, №525, №530

Знать понятие цилиндра, его элементов, формулу площади поверхности цилиндра.

Уметь решать задачи на нахождение основных элементов цилиндра.

Урок изучения нового материала

19

2



Сечения цилиндра плоскостью.

Понятие цилиндра, его элементов, формула площади поверхности цилиндра.

§1 п.53-54,№535, №539

Знать понятие цилиндра, его элементов, формулу площади поверхности цилиндра.

Уметь решать задачи на сечения цилиндра плоскостью

Комбиниро-ванный урок

20

3



Площадь поверхности цилиндра.

Понятие цилиндра, его элементов, формула площади поверхности цилиндра.

§1 п.53-54, №544, №546

Знать понятие цилиндра, его элементов, формулу площади поверхности цилиндра.

Уметь применять формулу площади цилиндра при решении задач.

Урок закрепления знаний

21

4



Понятие конуса.

Понятие конуса, его элементов, формула для вычисления площади его поверхности.

§2. п.55-56, вопр.5-8 стр.135, №548 (б), №550

Знать понятие конуса, его элементов, формулу для вычисления площади его поверхности.

Уметь решать задачи на нахождение основных элементов конуса.

Урок изучения нового материала

22

5



Сечения конуса плоскостью.

Понятие конуса, его элементов, формула для вычисления площади его поверхности.

§2. п.55-56, №555(б), №557

Знать понятие конуса, его элементов, формулу для вычисления площади его поверхности.

Уметь решать задачи на сечения конуса

Комбиниро-ванный урок

23

6



Площадь поверхности конуса.

Понятие конуса, его элементов, формула для вычисления площади его поверхности.

§2. п.55-56, вопр..5-8 стр.135, №564, №568 (б).

Знать понятие конуса, его элементов, формулу для вычисления площа-ди его поверхности.

Уметь решать задачи на нахождение площади поверхности конуса.

Урок закрепления знаний

24

7



Усеченный конус.

Понятие усеченного конуса, его элементов, формула для вычисления площади его боковой поверхности.

§2. п.57, №572 №571

Знать понятие усеченного конуса, его элементов, формулу для вычисления площади его боковой поверхности.

Уметь решать задачи на нахождение площади поверхности усеченного конуса.

Урок изучения нового материала

25

8



Решение задач по теме: «Цилиндр, конус».

Выполнение упражнений по материалу §1,2. п.53-57.

§2. п.55-57, задачи в тетради.

Знать теоретический материал §1,2. п.53-57.

Уметь решать задачи на данную тему.

Обобщение и системати-зация знаний

26

9



Контрольная работа №3 по теме «Цилиндр, конус».

Проверка знаний, умений и навыков по теме

Задания нет

Знать теоретический материал §1,2 п.53-57.

Уметь решать задачи по данной теме.

Урок контроль

27

10



Сфера и шар.

Понятия сферы и шара и их элементов.

§3. п.58, №573(б), №575

Знать понятия сферы и шара и их элементов.

Уметь решать задачи на нахождение основных элементов сферы и шара.

Урок изучения нового материала

28

11



Уравнение сферы.

Уравнение сферы.

§3. п.58,59, №576, 579(б)

Знать уравнение сферы.

Уметь записывать уравнение сферы.

Урок изучения нового материала

29

12



Взаимное расположение сферы и плоскости.

Рассмотреть случаи взаимного расположения сферы и плоскости.

§3. п. 60 №580, №582

Знать случаи взаимного расположения сферы и плоскости.

Уметь выяснять взаимное расположение сферы и плоскости.

Урок изучения нового материала

30

13



Касательная плоскость к сфере.

Свойство плоскости, касательной к сфере.

§3. п.61 №589(б) №592

Знать свойство плоскости, касательной к сфере.

Уметь решать задачи на данную тему.

Урок изучения нового материала

31

14



Площадь сферы.

Формула площади сферы.

§3. п.62 №597 №598

Знать формулу площади сферы.

Уметь применять формулу площади сферы при решении задач.

Комбиниро-ванный урок

32

15



Комбинации геометрических тел.

Рассмотреть комбинации шара и призмы, шара и пирамиды.

§1-3 №631(б)

Знать формулы площадей цилиндра, конуса, сферы.

Уметь решать задачи на комбинации шара и при-змы, шара и пирамиды.

Комбиниро-ванный урок

33

16



Комбинации геометрических тел.

Задачи на комбинации шара и конуса, шара и цилиндра

§1-3 №643, 645

Знать основные понятия и формулы данной темы.

Уметь решать задачи на комбинации шара и конуса, шара и цилиндра.

Урок проверки и коррекции знаний и умений

34

17



Решение задач по теме «Сфера и шар».

Выполнение упражнений по материалу §3. п.58-62.

§1-3№639(б)

Знать теоретический материал §3. п.58-62.

Уметь решать задачи на данную тему.

Урок закрепления знаний

35

18



Контрольная работа №4 по теме «Сфера и шар».

Проверка знаний, умений и навыков по теме

Задания нет

Знать теоретический материал §1-3 п.53-62.

Уметь решать задачи по данной теме.

Урок контроль

36

19



Зачет по теме «Цилиндр, конус и шар».

Карточки, содержащие основные вопросы теории и некоторые типичные задачи.

Задания нет

Проверка теоретических знаний по теме, выявление уровня усвоения основных геометрических понятий и умение применять их на практике.

Урок контроль теоретичес-ких знаний



  1. Объемы тел. – 21 час


37

1



Объемы тел.

Понятие объема тела, свойства объема. Объем прямоугольного параллелепипеда.

§1, п.63,64 №647(б) №648(б), №649(в)

Знать понятие объема тела, свойства объема, объем прямоугольного параллелепипеда.

Уметь применять при решении задач теорему об объеме прямоугольного параллелепипеда.


Комбиниро-ванный урок

38

2



Объем прямоугольного параллелепипеда.

Понятие объема тела, свойства объема. Объем прямоугольного параллелепипеда.

§1, п.64 №651, 653

Знать теорему об объеме прямоугольного параллелепипеда.

Уметь применять при решении задач теорему об объеме прямоугольного параллелепипеда.


Комбиниро-ванный урок

39

3



Объем прямой призмы.

Теорема об объеме прямой призмы.

§2, п.65, №660, №663(б,г)

Знать теорему об объеме прямой призмы.

Уметь применять при решении задач теорему об объеме прямой призмы.

Урок изучения нового материала

40

4



Объем цилиндра.

Теорема об объеме цилиндра.

§2. п.66 №668

Знать формулу объема цилиндра.

Уметь решать задачи с использованием формулы объема цилиндра.

Урок изучения нового материала

41

5



Объем цилиндра.

Доказательство теоремы об объеме цилиндра с помощью интеграла.

§2. п.66 №670

Знать доказательство теоремы об объеме цилиндра с помощью интеграла.


Уметь решать задачи с использованием формулы объема цилиндра.

Комбиниро-ванный урок

42

6



Объем наклонной призмы.

Теорема об объеме наклонной призме.

§3 п.67,68 №676, №679

Знать теорему об объеме наклонной призмы.

Уметь применять теорему об объеме наклонной призмы в простых случаях.

Урок изучения нового материала

43

7



Решение задач по теме: «Объем наклонной призмы».

Теорема об объеме наклонной призме.

§3 п.67,68 №680

Знать теорему об объеме наклонной призмы.

Уметь применять теорему об объеме наклонной призмы в простых случаях.

Комбиниро-ванный урок

44

8



Объем пирамиды.

Теорема об объеме пирамиды.

§3 п.69 №686(б), 689

Знать теорему об объеме пирамиды.

Уметь применять теорему об объеме пирамиды в простых случаях.

Урок изучения нового материала

45


9



Объем пирамиды.

Теорема об объеме пирамиды.

§3 п.69 №691, №695(а)

Знать теорему об объеме пирамиды.

Уметь применять теорему об объеме пирамиды в простых случаях.

Урок закрепления знаний

46

10



Объем усеченной пирамиды.

Формула объема усеченной пирамиды.

§3 п.69 №700, №697

Знать формулу объема усеченной пирамиды.

Уметь применять формулу объема усеченной пирамиды к решению задач.

Урок изучения нового материала

47

11



Объем конуса.

Теорема об объеме конуса.

§3 п.70 №703, №705

Знать теорему об объеме конуса.

Уметь применять теорему об объеме конуса при решении задач.

Урок изучения нового материала

48

12



Объем усеченного конуса.

Формула объема усеченного конуса.

§3 п.70 №708, №701(в)

Знать формулу объема усеченного конуса.

Уметь применять формулу объема усеченного конуса к решению задач.

Комбиниро-ванный урок

49

13



Решение задач по теме «Объемы тел».

Выполнение упражнений по материалам §1-3 пп.63-70.

§1-3 №728 №750

Знать теоретический материал §§1-3 пп.63-70.

Уметь применять формулы объемов тел при решении задач.

Обобщение и систематиза-ция знаний

50

14



Контрольная работа №5 по теме: «Объемы тел».

Проверка знаний, умений и навыков по теме

Задания нет

Знать теоретический материал §1-3 п.63-70.

Уметь решать задачи по данной теме.



Урок контроль

51

15



Объем шара.

Теорема об объеме шара и ее применение при решении задач.

§4 п.71 №713, №710(в)

Знать теорему об объеме шара.

Уметь применять теорему об объеме шара при решении задач.

Урок изучения нового материала

52

16



Объем частей шара.

Формулы объемов шарового сегмента, шарового слоя, шарового сектора.


§4 п.72 №715, №717

Знать формулы объемов шарового сегмента, шарового слоя, шарового сектора.


Уметь применять формулы объемов шарового сегмента, шарового слоя, шарового сектора при решении задач.


Комбиниро-ванный урок

53

17



Площадь сферы.

Формула для вычисления площади сферы и применение ее при решении задач.



§4 п.73 №723, №724

Знать формулу для вычисления площади сферы.



Уметь применять формулу для вычисления площади сферы при решении задач.

Урок изучения нового материала

54

18



Шар, вписанный в пирамиду. Шар, описанный около пирамиды.

Задачи на комбинации шара и пирамиды.

§1-4. №754, №759

Знать формулу объема шара и пирамиды.

Уметь решать задачи на вычисление объема шара, вписанного в пирамиду, описанного около пирамиды.


Урок проверки и коррекции знаний и умений

55

19



Решение задач по теме: «Цилиндр, конус, шар».

Выполнение упражнений по материалам §1-4 пп.71-73.

§1-4 №756

Знать теоретический материал §§1-4 пп.71-73.

Уметь применять формулы объемов тел при решении задач.

Обобщение и систематиза-ция знаний

56

20



Контрольная работа №6 по теме «Цилиндр, конус, шар».


Проверка знаний, умений и навыков по теме

Задания нет

Знать теоретический материал §1-4 п.71-73.

Уметь решать задачи по данной теме.

Урок контроль

57

21



Зачет по теме «Объёмы тел».

Карточки, содержащие основные вопросы теории и некоторые типичные задачи.

Задания нет

Проверка теоретических знаний по теме, выявление уровня усвоения основных геометрических понятий и умение применять их на практике.

Урок контроль теоретичес-ких знаний





  1. Повторение – 11 часов.


58

1



Повторение по теме «Треугольники»

Систематизация теоретических знаний по теме «Треугольники».

Задачи на повторение из дидактических материалов.

Знать: определение треугольника, равнобедренного и равностороннего треугольника. Признаки равенства и подобия треугольников. Формулы площади треугольника. Теоремы Пифагора, синусов и косинусов. Определение синуса, косинуса и тангенса острого угла.

Уметь решать задачи по данной теме.

Урок повторения и обобщения

59

2



Повторение по теме «Четырехугольники. Многоугольники».

Систематизация теоретических знаний по теме «Четырехугольники. Многоугольники».

Задачи на повторение из дидактических материалов.

Знать: сумму углов выпуклого многоугольника, четырехугольника; определения, свойства и признаки прямоугольника, параллелограмма, трапеции, ромба и квадрата; теорему Фалеса; формулы для вычисления площади прямоугольника, параллелограмма, трапеции, ромба и квадрата.

Уметь решать задачи по данной теме.

Урок повторения и обобщения

60

3



Повторение по теме «Окружность».

Систематизация теоретических знаний по теме «Окружность».

Задачи на повторение из дидактических материалов.

Знать: свойство касательной и ее признак; свойство отрезков касательных, проведенных из одной точки; теорему от отрезках пересекающихся хорд; свойство биссектрисы угла; свойства описанного и вписанного четырехугольников; формулы радиусов вписанной и описанной окружностей, длины окружности и длины дуги, площади круга и кругового сектора.

Уметь решать задачи по теме.

Урок повторения и обобщения

61

4



Повторение по теме «Параллельность прямых и плоскостей»

Повторение теории о параллельности прямых и плоскостей, скрещивающихся прямых. Решение задач.

Задачи на повторение из дидактических материалов.

Знать: понятия параллельных прямых, отрезков, лучей в пространстве; теорему о параллельных прямых; лемму о пересечении плоскости параллельными прямыми; теорему о трёх параллельных прямых; возможные случаи взаимного расположения прямой и плоскости в пространстве; понятие параллельности прямой и плоскости; признак параллельности прямой и плоскости.

Уметь решать задачи по данной теме.

Урок повторения и обобщения

62

5



Повторение по теме «Перпендикулярность прямых и плоскостей»

Повторение теории о перпендикулярности прямых и плоскостей, теоремы о трёх перпендикулярах. Решение задач.

Задачи на повторение из дидактических материалов.

Знать: понятия перпендикулярных прямых в пространстве, прямой и плоскости, двух плоскостей, перпендикуляра, проведенного из точки к плоскости, и основания перпендикуляра, наклонной, проведённой из точки к плоскости, и основания наклонной, проекции наклонной на плоскость, расстояния от точки до плоскости; связь между наклонной, её проекцией и перпендикуляром; лемму о перпендикулярности двух прямых к третьей прямой; теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости; признак перпендикулярности прямой и плоскости; теорему о трёх перпендикулярах; признак перпендикулярности двух плоскостей.


Уметь решать задачи по данной теме.

Урок повторения и обобщения

63

6



Повторение по теме «Декартовы координаты и векторы в пространстве»

Повторение действий над векторами, простейших задач в координатах. Решение задач.

Задачи на повторение из дидактических материалов.

Знать: понятие вектора в пространстве, нулевого вектора, длины ненулевого вектора; определения коллинеарных, равных, компланарных векторов; правила сложения, вычитания векторов и умножения вектора на число; признак компланарности трёх векторов; понятие координат вектора. Равных векторов; формулы для нахождения координат вектора по координатам точек конца и начала вектора, координат середины отрезка, вычисления длины вектора, расстояния между точками; понятие скалярного произведения векторов; две формулы для нахождения скалярного произведения векторов; основные свойства скалярного произведения векторов.


Уметь решать задачи по данной теме.

Урок повторения и обобщения

64

7



Повторение по теме «Площади и объёмы многогранников»

Повторение формул площадей и объёмов многогранников. Решение задач на нахождение площадей и объёмов многогранников.

Задачи на повторение из дидактических материалов.

Знать: формулы площади боковой поверхности и полной поверхности пирамиды, площади боковых поверхностей правильной пирамиды и усечённой пирамиды, площади поверхности прямой и наклонной призмы; теорему и следствие об объёме прямоугольного параллелепипеда; теоремы об объёме прямой призмы, пирамиды, усечённой пирамиды.


Уметь решать задачи по данной теме.

Урок повторения и обобщения

65

8



Повторение по теме «Площади и объёмы тел вращения»

Повторение формул площадей и объёмов тел вращения. Решение задач на нахождение площадей и объёмов тел вращения.

Задачи на повторение из дидактических материалов.

Знать: формулы для вычисления площади боковой поверхности и полной поверхности цилиндра, площади боковой и полной поверхности конуса и усечённого конуса, площади сферы, объёмов шара и частей шара, цилиндра, конуса и усечённого конуса.


Уметь решать задачи по данной теме.

Урок повторения и обобщения

66

9



Решение задач.

Подготовка к контрольной работе.

Задачи подго-товительного варианта конт-рольной работы.


Знать: основной теоретический материал курса планиметрии и стереометрии.

Уметь решать задачи по теме.

Урок повторения и обобщения

67

10



Итоговая контрольная работа.

Проверка знаний, умений и навыков по курсу стереометрии и планиметрии.


Задания нет

Знать основные понятия, определения и формулировки курса геометрии.

Уметь решать задачи.

Урок контроля

68

11



Решение задач.

Работа над ошибками. Решение задач по материалам ЕГЭ.

Задания нет

Знать основные понятия, определения и формулировки курса геометрии.

Уметь решать задачи.

Урок закрепление изученного материала





















Контрольные работы

по геометрии

11 класс























Контрольная работа №1 Г- 11

по теме «Метод координат в пространстве»

I вариант.


№1. Найдите координаты вектора , если , .


№2. Даны векторы и . Найдите .


№3. Изобразите систему координат Oxyz и постройте точку . Найдите расстояние от этой точки до координатных плоскостей.



Контрольная работа №1 Г- 11

по теме «Метод координат в пространстве»


II вариант.


№1. Найдите координаты вектора , если , .


№2. Даны векторы и . Найдите .


№3. Изобразите систему координат Oxyz и постройте точку . Найдите расстояние от этой точки до координатных плоскостей.



Контрольная работа №1 Г- 11

по теме «Метод координат в пространстве»


III вариант.


№1. Найдите координаты вектора , если , .


№2. Даны векторы и . Найдите .


№3. Изобразите систему координат Oxyz и постройте точку . Найдите расстояние от этой точки до координатных плоскостей.


Контрольная работа №1 Г- 11

по теме «Метод координат в пространстве»

IV вариант.


№1. Найдите координаты вектора , если , .


№2. Даны векторы и . Найдите .


№3. Изобразите систему координат Oxyz и постройте точку . Найдите расстояние от этой точки до координатных плоскостей.

Контрольная работа №2 Г- 11

по теме «Скалярное произведение векторов»


I вариант.


№1. Вычислите скалярное произведение векторов и , если , , , , , , .


№2. Дан куб АВСDA1B1C1D1. Найдите угол между прямыми AC и DC1.


№3. Даны точки А(0;1;2), В(, С(, D(0;2;1). Докажите, что АВСD – ромб.




Контрольная работа №2 Г- 11

по теме «Скалярное произведение векторов»


II вариант.


№1. Вычислите скалярное произведение векторов и , если , , , , , , .


№2. Дан куб АВСDA1B1C1D1. Найдите угол между прямыми AD1 и BM, где M – середина ребра DD1.


№3. Даны точки А(14;-8;-1), В(, С(, D(1;-7;-1). Докажите, что АВСD – ромб.



Контрольная работа №2 Г- 11

по теме «Скалярное произведение векторов»


III вариант.


№1. Вычислите скалярное произведение векторов и , если , , ,

, , , .


№2. Дан куб АВСDA1B1C1D1. Найдите угол между прямыми AB1 и D1C.


№3. Даны точки А(1;1;5), В(, С(, D(5;-1;5). Докажите, что АВСD – прямоугольник.



Контрольная работа №2 Г- 11

по теме «Скалярное произведение векторов»


IV вариант.

№1. Вычислите скалярное произведение векторов и , если , , , , , , .


№2. Дан куб АВСDA1B1C1D1. Найдите угол между прямыми В1D и АР, где Р – середина ребра ВС.


№3. Даны точки А(8;4;3), В(, С(, D(2;-2;3). Докажите, что АВСD – прямоугольник.


Контрольная работа №3 по теме «Цилиндр. Конус» Г- 11


I вариант.

№1. Осевое сечение цилиндра – квадрат, площадь основания цилиндра равна см2. Найдите площадь полной поверхности цилиндра.

№2. Высота конуса 6 см, угол при вершине осевого сечения равен 120º. Найдите:

а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 30º;

б) площадь боковой поверхности конус.

№3. Радиусы оснований усечённого конуса 3 см и 7 см, образующая 5 см. Найти площадь осевого сечения.


Контрольная работа №3 по теме «Цилиндр. Конус» Г- 11

II вариант.


№1. Осевое сечение цилиндра – квадрат, диагональ которого равна 4 см. Найдите площадь полной поверхности цилиндра.

№2. Радиус основания конуса равен 6 см, а образующая наклонена к плоскости основания под углом 30º. Найдите:

а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 60º;

б) площадь боковой поверхности конуса.

№3. Радиусы оснований усечённого конуса 11 см и 16 см, образующая 13 см. Найти расстояние от центра меньшего основания до окружности большего основания.



Контрольная работа №3 по теме «Цилиндр. Конус» Г- 11

III вариант.


№1. Осевое сечение цилиндра – квадрат, площадь основания цилиндра равна см2. Найдите площадь полной поверхности цилиндра.

№2. Высота конуса 18 см, угол при вершине осевого сечения равен 90º. Найдите:

а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 60º;

б) площадь боковой поверхности конуса.

№3. Радиусы оснований усечённого конуса 4 см и 10 см, образующая 8 см. Найти площадь осевого сечения.



Контрольная работа №3 по теме «Цилиндр. Конус» Г- 11

IV вариант.


№1. Осевое сечение цилиндра – квадрат, диагональ которого равна 10 см. Найдите площадь полной поверхности цилиндра.

№2. Радиус основания конуса равен 6 см, а образующая наклонена к плоскости основания под углом 60º. Найдите:

а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 45º;

б) площадь боковой поверхности конуса.

№3. Радиусы оснований усечённого конуса 2 см и 10 см, образующая 6 см. Найти расстояние от центра меньшего основания до окружности большего основания.



Контрольная работа №3 по теме «Цилиндр. Конус» Г- 11

V вариант.


№1. Осевое сечение цилиндра – квадрат, площадь основания цилиндра равна см2. Найдите площадь полной поверхности цилиндра.

№2. Высота конуса 24 см, угол при вершине осевого сечения равен 60º. Найдите:

а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 60º;

б) площадь боковой поверхности конус.

№3. Радиусы оснований усечённого конуса 4 см и 8 см, образующая 5 см. Найти площадь осевого сечения.


Контрольная работа №4 по теме «Сфера и шар» Г- 11

I вариант.


№1. Диаметр шара равен 2m. Через конец диаметра проведена плоскость под углом 45º к нему. Найдите длину линии пересечения сферы этой плоскостью.

№2. Точка А(0; ; ) лежит на сфере с центром О (3; 0; 0). Запишите уравнение сферы.

№3. Сечение шара плоскостью, удаленной от его центра на 8 см, имеет площадь 36 см2. Определите площадь поверхности шара.

№4. Докажите, что уравнение х2 + у2 + z2 – 6x – 4y – 8z = 4 является уравнением сферы. Найдите центр и радиус сферы.

Контрольная работа №4 по теме «Сфера и шар» Г- 11

II вариант.


№1. Диаметр шара равен 4a. Через конец диаметра проведена плоскость под углом 30º к нему. Найдите площадь сечения шара этой плоскостью.

№2. Центр сферы имеет координаты С(1; 2; 0). Сфера проходит через точку А(; 0; 5). Запишите уравнение сферы.

№3. Линия пересечения сферы и плоскости, удаленной от его центра на 8 см, имеет длину 12 см. Найдите площадь поверхности шара.

№4. Докажите, что уравнение х2 + у2 + z2 – 8x – 6y = 6 является уравнением сферы. Найдите центр и радиус сферы.


Контрольная работа №4 по теме «Сфера и шар» Г- 11

III вариант.


№1. Диаметр шара равен 6c. Через конец диаметра проведена плоскость под углом 60º к нему. Найдите длину линии пересечения сферы этой плоскостью.

№2. Напишите уравнение сферы с центром в точке А(2;-1;6), проходящей через точку О (4; 2; 5).

№3. Сечение шара плоскостью, удаленной от его центра на 4 см, имеет площадь 9 см2. Определите площадь поверхности шара.

№4. Докажите, что уравнение х2 + у2 + z2 + 8y – 4z = 8 является уравнением сферы. Найдите центр и радиус сферы.


Контрольная работа №4 по теме «Сфера и шар» Г- 11

IV вариант.


№1. Диаметр шара равен 8a. Через конец диаметра проведена плоскость под углом 45º к нему. Найдите площадь сечения шара этой плоскостью.

№2. Центр сферы имеет координаты А(-2; 1; -4). Сфера проходит через точку В(6; -7; 10). Запишите уравнение сферы.

№3. Линия пересечения сферы и плоскости, удаленной от его центра на 3 см, имеет длину 8 см. Найдите площадь поверхности шара.

№4. Докажите, что уравнение х2 + у2 + z2 – 8x + 4y = 10 является уравнением сферы. Найдите центр и радиус сферы.


Контрольная работа №4 по теме «Сфера и шар» Г- 11

V вариант.


№1. Диаметр шара равен 10c. Через конец диаметра проведена плоскость под углом 30º к нему. Найдите длину линии пересечения сферы этой плоскостью.

№2. Напишите уравнение сферы с центром в точке А(-6;2;4), проходящей через точку О (2; 4; -8).

№3. Сечение шара плоскостью, удаленной от его центра на 3 см, имеет площадь 16 см2. Определите площадь поверхности шара.

№4. Докажите, что уравнение х2 + у2 + z2 + 4х – 4z = 12 является уравнением сферы. Найдите центр и радиус сферы.


Контрольная работа №5 по теме «Объёмы тел» Г- 11

I вариант.


№1. Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60º. Найдите объем пирамиды.

№2. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2a, а прилежащий угол равен 60º. Диагональ большой боковой грани призмы составляет с плоскостью ее основания угол 45º. Найдите объем цилиндра.




Контрольная работа №5 по теме «Объёмы тел» Г- 11

II вариант.


№1. В правильной четырёхугольной пирамиде плоский угол при вершине равен 60º, длина бокового ребра равна 8 см. Найдите объем пирамиды.

№2. В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2a, а прилежащий угол равен 30º. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол 45º. Найдите объем конуса.




Контрольная работа №5 по теме «Объёмы тел» Г- 11

III вариант.


№1. Боковое ребро правильной треугольной пирамиды равно 4 см. Плоский угол при вершине равен 60º. Найдите объем пирамиды.

№2. Боковые рёбра четырёхугольной пирамиды составляют с основанием угол 45º. Найдите объём описанного около неё конуса, если сторона пирамиды равна а см.




Контрольная работа №5 по теме «Объёмы тел» Г- 11

IV вариант.


№1. Апофема правильной четырёхугольной пирамиды равна 6 см, а двугранный угол при основании равен 30º. Найдите объем пирамиды.

№2. В цилиндр вписана призма. Основанием призмы служит квадрат, сторона которого равна a. Диагональ боковой грани призмы составляет с плоскостью ее основания угол 45º. Найдите объем цилиндра.




Контрольная работа №5 по теме «Объёмы тел» Г- 11

V вариант.


№1. Боковое ребро правильной треугольной пирамиды равно 10 см и составляет с плоскостью основания угол 60º. Найдите объем пирамиды.

№2. Цилиндр и конус имеют равные радиусы оснований и равные высоты. Объём цилиндра равен 60 см3. Найдите объём конуса.




Контрольная работа №5 по теме «Объёмы тел» Г- 11

VI вариант.


№1. Боковое ребро правильной треугольной пирамиды равно 6 см и составляет с плоскостью основания угол 60º. Найдите объем пирамиды.

№2. Цилиндр и конус имеют равные радиусы оснований и равные высоты. Объём конуса равен 40 см3. Найдите объём цилиндра.

Контрольная работа №6 по теме «Объём шара и площадь сферы» Г- 11

I вариант.


№1. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол 60º. Найдите отношение объемов конуса и шара.


№2. Объем цилиндр равен см3, площадь его осевого сечения – 48 см2. Найдите площадь сферы, описанного около цилиндра.


Контрольная работа №6 по теме «Объём шара и площадь сферы» Г- 11

II вариант.


№1. В конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите площадь сферы, если образующая конуса равна 6 см.


№2. Диаметр шара равен диагонали куба. Найдите отношение объемов шара и куба.



Контрольная работа №6 по теме «Объём шара и площадь сферы» Г- 11

III вариант.


№1. Диаметр шара равен образующей конуса. Образующая конуса составляет с плоскостью основания угол 30º. Найдите отношение объемов конуса и шара.


№2. Прямоугольный параллелепипед описан около сферы. Найдите объём параллелепипеда, если площадь сферы равна 16 см2.


Контрольная работа №6 по теме «Объём шара и площадь сферы» Г- 11

IV вариант.


№1. Около конуса, осевое сечение которого есть правильный треугольник, описан шар. Найдите площадь сферы, если образующая конуса равна 6 см.


№2. Диаметр шара равен боковому ребру правильной четырёхугольной пирамиды. Сечение пирамиды, проходящее через её высоту и боковое ребро, является равносторонним треугольником. Найдите отношение объемов шара и пирамиды.



Контрольная работа №6 по теме «Объём шара и площадь сферы» Г- 11

V вариант.


№1. Прямоугольный параллелепипед вписан в сферу. Найдите объём параллелепипеда, если площадь сферы равна 36 см2.


№2. Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объемов шара и цилиндра.



Контрольная работа №6 по теме «Объём шара и площадь сферы» Г- 11

VI вариант.


№1. Найдите объём шара, если площадь сферы равна 81 см2.


№2. В правильной четырёхугольной призме сторона основания равна 6 см, боковое ребро равно 2см. Найдите объём описанного около призмы шара.

Контрольная работа №7 (итоговая) Г- 11

I вариант.


В правильной четырёхугольной пирамиде МАВСD сторона основания равна 6 см, а боковое ребро 5см. Найдите:

  1. площадь боковой поверхности пирамиды;

  2. объём пирамиды;

  3. угол наклона боковой грани к плоскости основания;

  4. скалярное произведение векторов ( + ) ;

  5. площадь описанной около пирамиды сферы;

  6. угол между BD и плоскостью DMC.




Контрольная работа №7 (итоговая) Г- 11

II вариант.


В правильной треугольной пирамиде МАВС сторона основания равна 4 см, а боковое ребро 5 см. Найдите:

  1. площадь боковой поверхности пирамиды;

  2. объём пирамиды;

  3. угол между боковым ребром и плоскостью основания;

  4. скалярное произведение векторов ( + ) , где Е – середина ВС;

  5. площадь вписанного в пирамиду шара;

  6. угол между стороной основания и плоскостью боковой грани.




Контрольная работа №7 (итоговая) Г- 11

III вариант.


В правильной четырёхугольной пирамиде МАВСD сторона основания равна 8 см наклонено к плоскости основания под углом 60º. Найдите:

  1. площадь боковой поверхности пирамиды;

  2. объём пирамиды;

  3. угол между противоположными боковыми гранями;

  4. скалярное произведение векторов ( + ) , где Е – середина DС;

  5. объём описанного около пирамиды шара;

  6. угол между боковым ребром АМ и плоскостью DMC.




Контрольная работа №7 (итоговая) Г- 11

IV вариант.


В правильной треугольной пирамиде МАВС сторона основания равна 2 см, а боковые грани наклонены к основанию под углом 60º. Найдите:

  1. площадь боковой поверхности пирамиды;

  2. объём пирамиды;

  3. угол между боковым ребром и плоскостью основания;

  4. скалярное произведение векторов ( + ) , где О – основание высоты пирамиды;

  5. площадь вписанной в пирамиду сферы;

  6. угол между МЕ, где Е – середина ВС , и плоскостью АМС.