СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа учителя по математике в 10 классах

Категория: Математика

Нажмите, чтобы узнать подробности

Данная работа содержит календарно-тематическе планирование с датами занятий, что облегчит работу коллег, как начинающих, так и более опытных

Просмотр содержимого документа
«Рабочая программа учителя по математике в 10 классах»


Муниципальное казенное общеобразовательное учреждение

Землянская средняя общеобразовательная школа

Семилукского муниципального района Воронежской области




Программа рассмотрена и рекомендована к утверждению на заседании методического совета школы протокол от «27» августа 2020 г. № 5

УТВЕРЖДЕНА:

На заседании педагогического совета

протокол от «31» августа 2020 г. №1



УТВЕРЖДАЮ:

Директор школы


__________ И.Ю. Вахтина

приказ от «01» сентября 2020 г. №59/11








РАБОЧАЯ ПРОГРАММА

по учебному предмету

«Математика: алгебра и начала анализа, геометрия»

для 10 класса

на 2020-2021 учебный год





Составитель:

Учитель математики

Катаева Надежда Степановна









с. Землянск

2020 г.








ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Рабочая программа по математике разработана для учащихся 10 -11 классов на основе следующих нормативно-правовых документов:

  1. Федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17.05.2012 г. N413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» с изменениями и дополнениями, внесенными приказом Минобрнауки РФ от 29 декабря 2014 г., 31 декабря 2015 г., 29 июня 2017 г.

  2. Постановления Главного государственного санитарного врача РФ от 29 декабря 2010 г. N 189 "Об утверждении СанПиН 2.4.2.2821-10 "Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях" (с изменениями и дополнениями от: 29 июня 2011 г., 25 декабря 2013 г., 24 ноября 2015 г.).

  3. Основной образовательной программы среднего общего образования МКОУ Землянской СОШ (с изменениями и дополнениями), утвержденной приказом директора школы от 01.09.2020 г. № 59/11.

  4. Учебного плана среднего общего образования для 10-11 кл. МКОУ Землянской СОШ, утвержденного на заседании педагогического совета (протокол №1 от 31.08.2020 г.).

  5. Приказа МКОУ Землянской СОШ от 15.05.2020 г. №34/2 «Об утверждении перечня учебников и учебных пособий, используемых в образовательной деятельности школы на 2020-2021 уч.г.».

  6. Календарного учебного графика МКОУ Землянской СОШ на 2020-2021 уч.г.


Рабочая программа по математике разработана в соответствии с федеральным государственным образовательным стандартом среднего общего образования на основе авторской программы С. М. Никольского, М.К. Потапова, Н.Н. Решетникова, А. В. И Шевкина «Алгебра и начала математического анализа» базовый и углубленный уровни, и, Погорелова А.В. «Геометрия 10-11 классы», который содержит базовый и углубленный уровни



Всего на уровне среднего общего образования на математику в МКОУ Землянской СОШ из учебного плана школы выделено 414 часов за 2 года обучения.


















Раздел 1. Планируемые результаты освоения учебного предмета


I.2.2. Планируемые метапредметные результаты освоения ООП

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).


  1. Регулятивные универсальные учебные действия

Выпускник научится:

самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;

оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;

ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;

выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;

организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;

сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;

критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;

использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;

находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;

выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;

выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;

менять и удерживать разные позиции в познавательной деятельности.


  1. Коммуникативные универсальные учебные действия

Выпускник научится:

осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;

при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.


I.2.3. Планируемые предметные результаты освоения ООП

На уровне среднего общего образования в соответствии с ФГОС СОО, помимо традиционных двух групп результатов «Выпускник научится» и «Выпускник получит возможность научиться», что ранее делалось в структуре ПООП начального и основного общего образования, появляются еще две группы результатов: результаты базового и углубленного уровней.

Логика представления результатов четырех видов: «Выпускник научится – базовый уровень», «Выпускник получит возможность научиться – базовый уровень», «Выпускник научится – углубленный уровень», «Выпускник получит возможность научиться – углубленный уровень» – определяется следующей методологией.

Как и в основном общем образовании, группа результатов «Выпускник научится» представляет собой результаты, достижение которых обеспечивается учителем в отношении всех обучающихся, выбравших данный уровень обучения. Группа результатов «Выпускник получит возможность научиться» обеспечивается учителем в отношении части наиболее мотивированных и способных обучающихся, выбравших данный уровень обучения. При контроле качества образования группа заданий, ориентированных на оценку достижения планируемых результатов из блока «Выпускник получит возможность научиться», может включаться в материалы блока «Выпускник научится». Это позволит предоставить возможность обучающимся продемонстрировать овладение качественно иным уровнем достижений и выявлять динамику роста численности наиболее подготовленных обучающихся.

Принципиальным отличием результатов базового уровня от результатов углубленного уровня является их целевая направленность. Результаты базового уровня ориентированы на общую функциональную грамотность, получение компетентностей для повседневной жизни и общего развития. Эта группа результатов предполагает:

– понимание предмета, ключевых вопросов и основных составляющих элементов изучаемой предметной области, что обеспечивается не за счет заучивания определений и правил, а посредством моделирования и постановки проблемных вопросов культуры, характерных для данной предметной области;

– умение решать основные практические задачи, характерные для использования методов и инструментария данной предметной области;

– осознание рамок изучаемой предметной области, ограниченности методов и инструментов, типичных связей с некоторыми другими областями знания.

Результаты углубленного уровня ориентированы на получение компетентностей для последующей профессиональной деятельности как в рамках данной предметной области, так и в смежных с ней областях. Эта группа результатов предполагает:

– овладение ключевыми понятиями и закономерностями, на которых строится данная предметная область, распознавание соответствующих им признаков и взаимосвязей, способность демонстрировать различные подходы к изучению явлений, характерных для изучаемой предметной области;

– умение решать как некоторые практические, так и основные теоретические задачи, характерные для использования методов и инструментария данной предметной области;

– наличие представлений о данной предметной области как целостной теории (совокупности теорий), об основных связях с иными смежными областями знаний.

Примерные программы учебных предметов построены таким образом, что предметные результаты базового уровня, относящиеся к разделу «Выпускник получит возможность научиться», соответствуют предметным результатам раздела «Выпускник научится» на углубленном уровне. Предметные результаты раздела «Выпускник получит возможность научиться» не выносятся на итоговую аттестацию, но при этом возможность их достижения должна быть предоставлена каждому обучающемуся.

Математика: алгебра и начала математического анализа, геометрия



Базовый уровень

«Проблемно-функциональные результаты»

Углубленный уровень

«Системно-теоретические результаты»

Раздел

I. Выпускник научится

III. Выпускник получит возможность научиться

II. Выпускник научится

IV. Выпускник получит возможность научиться

Цели освоения предмета

Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики


Для развития мышления, использования в повседневной жизни

и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики

Для успешного продолжения образования

по специальностям, связанным с прикладным использованием математики

Для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук


Требования к результатам

Элементы теории множеств и математической логики

Оперировать на базовом уровне1 понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал;

оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

находить пересечение и объединение двух множеств, представленных графически на числовой прямой;

строить на числовой прямой подмножество числового множества, заданное простейшими условиями;

распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.


В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой для описания реальных процессов и явлений;

  • проводить логические рассуждения в ситуациях повседневной жизни

  • Оперировать2 понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;

  • оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

  • проверять принадлежность элемента множеству;

  • находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

  • проводить доказательные рассуждения для обоснования истинности утверждений.


В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

  • проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов

  • Свободно оперировать3 понятиями: конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;

  • задавать множества перечислением и характеристическим свойством;

  • оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

  • проверять принадлежность элемента множеству;

  • находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

  • проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

  • проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов

Достижение результатов раздела II;

оперировать понятием определения, основными видами определений, основными видами теорем;

понимать суть косвенного доказательства;

оперировать понятиями счетного и несчетного множества;

применять метод математической индукции для проведения рассуждений и доказательств и при решении задач.

В повседневной жизни и при изучении других предметов:

использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа и выражения

Оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;

оперировать на базовом уровне понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;

выполнять арифметические действия с целыми и рациональными числами;

выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел, либо логарифмы чисел;

сравнивать рациональные числа между собой;

оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;

изображать точками на числовой прямой целые и рациональные числа;

изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;

выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;

выражать в простейших случаях из равенства одну переменную через другие;

вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

изображать схематически угол, величина которого выражена в градусах;

оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов.


В повседневной жизни и при изучении других учебных предметов:

выполнять вычисления при решении задач практического характера;

выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств;

соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;

использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни



Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;

приводить примеры чисел с заданными свойствами делимости;

оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и π;

выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;

находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства;

пользоваться оценкой и прикидкой при практических расчетах;

проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические функции;

находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

  • изображать схематически угол, величина которого выражена в градусах или радианах;

  • использовать при решении задач табличные значения тригонометрических функций углов;

  • выполнять перевод величины угла из радианной меры в градусную и обратно.


В повседневной жизни и при изучении других учебных предметов:

выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства;

оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира


  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

  • переводить числа из одной системы записи (системы счисления) в другую;

  • доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач;

  • выполнять округление рациональных и иррациональных чисел с заданной точностью;

  • сравнивать действительные числа разными способами;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

  • находить НОД и НОК разными способами и использовать их при решении задач;

  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;

  • выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.


В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Достижение результатов раздела II;

свободно оперировать числовыми множествами при решении задач;

понимать причины и основные идеи расширения числовых множеств;

владеть основными понятиями теории делимости при решении стандартных задач

иметь базовые представления о множестве комплексных чисел;

свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;

владеть формулой бинома Ньютона;

применять при решении задач теорему о линейном представлении НОД;

применять при решении задач Китайскую теорему об остатках;

применять при решении задач Малую теорему Ферма;

уметь выполнять запись числа в позиционной системе счисления;

применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;

применять при решении задач цепные дроби;

применять при решении задач многочлены с действительными и целыми коэффициентами;

владеть понятиями приводимый и неприводимый многочлен и применять их при решении задач;

применять при решении задач Основную теорему алгебры;

применять при решении задач простейшие функции комплексной переменной как геометрические преобразования

Уравнения и неравенства


Решать линейные уравнения и неравенства, квадратные уравнения;

решать логарифмические уравнения вида log a (bx + c) = d и простейшие неравенства вида log a x d;

решать показательные уравнения, вида abx+c= d (где d можно представить в виде степени с основанием a) и простейшие неравенства вида ax d (где d можно представить в виде степени с основанием a);.

приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a, cos x = a, tg x = a, ctg x = a, где a – табличное значение соответствующей тригонометрической функции.


В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения и системы уравнений при решении несложных практических задач

  • Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;

использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;

использовать метод интервалов для решения неравенств;

  • использовать графический метод для приближенного решения уравнений и неравенств;

  • изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;

  • выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.


В повседневной жизни и при изучении других учебных предметов:

  • составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;

  • использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3-й и 4-й степеней, дробно-рациональные и иррациональные;

  • овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;

  • применять теорему Безу к решению уравнений;

  • применять теорему Виета для решения некоторых уравнений степени выше второй;

  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

  • владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

  • владеть разными методами доказательства неравенств;

  • решать уравнения в целых числах;

  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;

  • свободно использовать тождественные преобразования при решении уравнений и систем уравнений


В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

  • использовать программные средства при решении отдельных классов уравнений и неравенств

Достижение результатов раздела II;

  • свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;

  • свободно решать системы линейных уравнений;

  • решать основные типы уравнений и неравенств с параметрами;

  • применять при решении задач неравенства Коши — Буняковского, Бернулли;

  • иметь представление о неравенствах между средними степенными




Функции

Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;

оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;

распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций;

соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы;

находить по графику приближённо значения функции в заданных точках;

определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);

строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).


В повседневной жизни и при изучении других предметов:

определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);

интерпретировать свойства в контексте конкретной практической ситуации

Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;

оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);

решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.


В повседневной жизни и при изучении других учебных предметов:

  • определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);

  • интерпретировать свойства в контексте конкретной практической ситуации;

  • определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач;

владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач;

владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;

владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач;

владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;

владеть понятием обратная функция; применять это понятие при решении задач;

применять при решении задач свойства функций: четность, периодичность, ограниченность;

применять при решении задач преобразования графиков функций;

владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия;

применять при решении задач свойства и признаки арифметической и геометрической прогрессий.

В повседневной жизни и при изучении других учебных предметов:

  • определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.);

  • интерпретировать свойства в контексте конкретной практической ситуации;.

определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Достижение результатов раздела II;

владеть понятием асимптоты и уметь его применять при решении задач;

применять методы решения простейших дифференциальных уравнений первого и второго порядков




Элементы математического анализа

Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;

определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;

решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.


В повседневной жизни и при изучении других предметов:

пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;

соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);

использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса

Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;

вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;

  • вычислять производные элементарных функций и их комбинаций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.


В повседневной жизни и при изучении других учебных предметов:

решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;

интерпретировать полученные результаты

Владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;

применять для решения задач теорию пределов;

владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности;

владеть понятиями: производная функции в точке, производная функции;

  • вычислять производные элементарных функций и их комбинаций;

  • исследовать функции на монотонность и экстремумы;

  • строить графики и применять к решению задач, в том числе с параметром;

  • владеть понятием касательная к графику функции и уметь применять его при решении задач;

  • владеть понятиями первообразная функция, определенный интеграл;

  • применять теорему Ньютона–Лейбница и ее следствия для решения задач.


В повседневной жизни и при изучении других учебных предметов:

  • решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов;

  • интерпретировать полученные результаты

  • Достижение результатов раздела II;

  • свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;

  • свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;

  • оперировать понятием первообразной функции для решения задач;

  • овладеть основными сведениями об интеграле Ньютона–Лейбница и его простейших применениях;

  • оперировать в стандартных ситуациях производными высших порядков;

  • уметь применять при решении задач свойства непрерывных функций;

  • уметь применять при решении задач теоремы Вейерштрасса;

  • уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла);

  • уметь применять приложение производной и определенного интеграла к решению задач естествознания;

  • владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость


Статистика и теория вероятностей, логика и комбинаторика


Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;

оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;

  • вычислять вероятности событий на основе подсчета числа исходов.


В повседневной жизни и при изучении других предметов:

оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;

читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков

  • Иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;

  • иметь представление о математическом ожидании и дисперсии случайных величин;

  • иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;

понимать суть закона больших чисел и выборочного метода измерения вероятностей;

иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;

иметь представление о важных частных видах распределений и применять их в решении задач;

  • иметь представление о корреляции случайных величин, о линейной регрессии.


В повседневной жизни и при изучении других предметов:

  • вычислять или оценивать вероятности событий в реальной жизни;

  • выбирать подходящие методы представления и обработки данных;

  • уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях

Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее;

  • оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;

  • владеть основными понятиями комбинаторики и уметь их применять при решении задач;

  • иметь представление об основах теории вероятностей;

  • иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;

  • иметь представление о математическом ожидании и дисперсии случайных величин;

  • иметь представление о совместных распределениях случайных величин;

  • понимать суть закона больших чисел и выборочного метода измерения вероятностей;

  • иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;

  • иметь представление о корреляции случайных величин.


В повседневной жизни и при изучении других предметов:

  • вычислять или оценивать вероятности событий в реальной жизни;

  • выбирать методы подходящего представления и обработки данных

Достижение результатов раздела II;

иметь представление о центральной предельной теореме;

иметь представление о выборочном коэффициенте корреляции и линейной регрессии;

иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости;

иметь представление о связи эмпирических и теоретических распределений;

иметь представление о кодировании, двоичной записи, двоичном дереве;

владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;

иметь представление о деревьях и уметь применять при решении задач;

владеть понятием связность и уметь применять компоненты связности при решении задач;

уметь осуществлять пути по ребрам, обходы ребер и вершин графа;

иметь представление об эйлеровом и гамильтоновом пути, иметь представление о трудности задачи нахождения гамильтонова пути;

  • владеть понятиями конечные и счетные множества и уметь их применять при решении задач;

  • уметь применять метод математической индукции;

  • уметь применять принцип Дирихле при решении задач


Текстовые задачи

Решать несложные текстовые задачи разных типов;

  • анализировать условие задачи, при необходимости строить для ее решения математическую модель;

  • понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;

  • действовать по алгоритму, содержащемуся в условии задачи;

  • использовать логические рассуждения при решении задачи;

  • работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи;

  • осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;

  • анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;

решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;

решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;

решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнóй оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.;

использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.

В повседневной жизни и при изучении других предметов:

  • решать несложные практические задачи, возникающие в ситуациях повседневной жизни

  • Решать задачи разных типов, в том числе задачи повышенной трудности;

  • выбирать оптимальный метод решения задачи, рассматривая различные методы;

  • строить модель решения задачи, проводить доказательные рассуждения;

  • решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

  • анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;

  • переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;


В повседневной жизни и при изучении других предметов:

  • решать практические задачи и задачи из других предметов

  • Решать разные задачи повышенной трудности;

  • анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;

  • строить модель решения задачи, проводить доказательные рассуждения при решении задачи;

  • решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

  • анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

  • переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.


В повседневной жизни и при изучении других предметов:

  • решать практические задачи и задачи из других предметов

Достижение результатов раздела II



Геометрия

Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;

распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);

изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;

делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;

извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

применять теорему Пифагора при вычислении элементов стереометрических фигур;

находить объемы и площади поверхностей простейших многогранников с применением формул;

распознавать основные виды тел вращения (конус, цилиндр, сфера и шар);

находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул.


В повседневной жизни и при изучении других предметов:

соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;

использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;

соотносить площади поверхностей тел одинаковой формы различного размера;

соотносить объемы сосудов одинаковой формы различного размера;

оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)

Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;

применять для решения задач геометрические факты, если условия применения заданы в явной форме;

решать задачи на нахождение геометрических величин по образцам или алгоритмам;

делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;

извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;

описывать взаимное расположение прямых и плоскостей в пространстве;

формулировать свойства и признаки фигур;

доказывать геометрические утверждения;

владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);

находить объемы и площади поверхностей геометрических тел с применением формул;

вычислять расстояния и углы в пространстве.


В повседневной жизни и при изучении других предметов:

использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний

  • Владеть геометрическими понятиями при решении задач и проведении математических рассуждений;

  • самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

  • исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

  • решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

  • уметь формулировать и доказывать геометрические утверждения;

  • владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр;

  • иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач;

  • уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов;

  • иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними;

  • применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач;

  • уметь применять параллельное проектирование для изображения фигур;

  • уметь применять перпендикулярности прямой и плоскости при решении задач;

  • владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач;

  • владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач;

  • владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач;

  • владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач;

  • владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач;

  • владеть понятием прямоугольный параллелепипед и применять его при решении задач;

  • владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;

  • иметь представление о теореме Эйлера, правильных многогранниках;

  • владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;

  • владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;

  • владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач;

  • иметь представления о вписанных и описанных сферах и уметь применять их при решении задач;

  • владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;

  • иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;

  • иметь представление о площади сферы и уметь применять его при решении задач;

  • уметь решать задачи на комбинации многогранников и тел вращения;

  • иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.

В повседневной жизни и при изучении других предметов:

  • составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат





  • Иметь представление об аксиоматическом методе;

  • владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач;

  • уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла;

  • владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач;

  • иметь представление о двойственности правильных многогранников;

  • владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций;

  • иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника;

  • иметь представление о конических сечениях;

  • иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач;

  • применять при решении задач формулу расстояния от точки до плоскости;

  • владеть разными способами задания прямой уравнениями и уметь применять при решении задач;

  • применять при решении задач и доказательстве теорем векторный метод и метод координат;

  • иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;

  • применять теоремы об отношениях объемов при решении задач;

  • применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя;

  • иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач;

  • иметь представление о площади ортогональной проекции;

  • иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач;

  • иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач;

  • уметь решать задачи на плоскости методами стереометрии;

  • уметь применять формулы объемов при решении задач


Векторы и координаты в пространстве

  • Оперировать на базовом уровне понятием декартовы координаты в пространстве;

  • находить координаты вершин куба и прямоугольного параллелепипеда

  • Оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы;

  • находить расстояние между двумя точками, сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;

  • задавать плоскость уравнением в декартовой системе координат;

  • решать простейшие задачи введением векторного базиса

  • Владеть понятиями векторы и их координаты;

  • уметь выполнять операции над векторами;

  • использовать скалярное произведение векторов при решении задач;

  • применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач;

  • применять векторы и метод координат в пространстве при решении задач


Достижение результатов раздела II;

  • находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин;

  • задавать прямую в пространстве;

  • находить расстояние от точки до плоскости в системе координат;

  • находить расстояние между скрещивающимися прямыми, заданными в системе координат


История математики


  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России

  • Представлять вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России

  • Иметь представление о вкладе выдающихся математиков в развитие науки;

  • понимать роль математики в развитии России

Достижение результатов раздела II


Методы математики

  • Применять известные методы при решении стандартных математических задач;

  • замечать и характеризовать математические закономерности в окружающей действительности;

  • приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства

  • Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

  • применять основные методы решения математических задач;

  • на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач

  • Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

  • применять основные методы решения математических задач;

  • на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;

  • пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов

Достижение результатов раздела II;

применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики)



Раздел 2. Содержание учебного предмета



Математика: алгебра и начала математического анализа, геометрия



В соответствии с принятой Концепцией развития математического образования в Российской Федерации, математическое образование решает, в частности, следующие ключевые задачи:

«предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе»;

«обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.»;

«в основном общем и среднем общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования».

Соответственно, выделяются три направления требований к результатам математического образования:

  1. практико-ориентированное математическое образование (математика для жизни);

  2. математика для использования в профессии;

  3. творческое направление, на которое нацелены те обучающиеся, которые планируют заниматься творческой и исследовательской работой в области математики, физики, экономики и других областях.

Эти направления реализуются в двух блоках требований к результатам математического образования.

На базовом уровне:

Выпускник научится в 10–11-м классах: для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.

Выпускник получит возможность научиться в 10–11-м классах: для развития мышления, использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.



На углубленном уровне:

Выпускник научится в 10–11-м классах: для успешного продолжения образования по специальностям, связанным с прикладным использованием математики.

Выпускник получит возможность научиться в 10–11-м классах: для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук.

В соответствии с Федеральным законом «Об образовании в РФ» (ст. 12 п. 7) организации, осуществляющие образовательную деятельность, реализуют эти требования в образовательном процессе с учетом настоящей примерной основной образовательной программы как на основе учебно-методических комплектов соответствующего уровня, входящих в Федеральный перечень Министерства образования и науки Российской Федерации, так и с возможным использованием иных источников учебной информации (учебно-методические пособия, образовательные порталы и сайты и др.)

Цели освоения программы базового уровня – обеспечение возможности использования математических знаний и умений в повседневной жизни и возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики. Внутри этого уровня выделяются две различные программы: компенсирующая базовая и основная базовая.

Компенсирующая базовая программа содержит расширенный блок повторения и предназначена для тех, кто по различным причинам после окончания основной школы не имеет достаточной подготовки для успешного освоения разделов алгебры и начал математического анализа, геометрии, статистики и теории вероятностей по программе средней (полной) общеобразовательной школы.

Программа по математике на базовом уровне предназначена для обучающихся средней школы, не испытывавших серьезных затруднений на предыдущего уровня обучения.

Обучающиеся, осуществляющие обучение на базовом уровне, должны освоить общие математические умения, необходимые для жизни в современном обществе; вместе с тем они получают возможность изучить предмет глубже, с тем чтобы в дальнейшем при необходимости изучать математику для профессионального применения.

При изучении математики на углубленном уроне предъявляются требования, соответствующие направлению «математика для профессиональной деятельности»; вместе с тем выпускник получает возможность изучить математику на гораздо более высоком уровне, что создаст фундамент для дальнейшего серьезного изучения математики в вузе.

Примерные программы содержат сравнительно новый для российской школы раздел «Вероятность и статистика». К этому разделу относятся также сведения из логики, комбинаторики и теории графов, значительно варьирующиеся в зависимости от типа программы.

Во всех примерных программах большое внимание уделяется практико-ориентированным задачам. Одна из основных целей, которую разработчики ставили перед собой, – создать примерные программы, где есть место применению математических знаний в жизни.

При изучении математики большое внимание уделяется развитию коммуникативных умений (формулировать, аргументировать и критиковать), формированию основ логического мышления в части проверки истинности и ложности утверждений, построения примеров и контрпримеров, цепочек утверждений, формулировки отрицаний, а также необходимых и достаточных условий. В зависимости от уровня программы больше или меньше внимания уделяется умению работать по алгоритму, методам поиска алгоритма и определению границ применимости алгоритмов. Требования, сформулированные в разделе «Геометрия», в большей степени относятся к развитию пространственных представлений и графических методов, чем к формальному описанию стереометрических фактов.





Базовый уровень



Компенсирующая базовая программа

Алгебра и начала математического анализа

Натуральные числа, запись, разрядные слагаемые, арифметические действия. Числа и десятичная система счисления. Натуральные числа, делимость, признаки делимости на 2, 3, 4, 5, 9, 10. Разложение числа на множители. Остатки. Решение арифметических задач практического содержания.

Целые числа. Модуль числа и его свойства.

Части и доли. Дроби и действия с дробями. Округление, приближение. Решение практических задач на прикидку и оценку.

Проценты. Решение задач практического содержания на части и проценты. Степень с натуральным и целым показателем. Свойства степеней. Стандартный вид числа.

Алгебраические выражения. Значение алгебраического выражения.

Квадратный корень. Изображение числа на числовой прямой. Приближенное значение иррациональных чисел.

Понятие многочлена. Разложение многочлена на множители, Уравнение, корень уравнения. Линейные, квадратные уравнения и системы линейных уравнений.

Решение простейших задач на движение, совместную работу, проценты. Числовые неравенства и их свойства. Линейные неравенства с одной переменной и их системы. Числовые промежутки. Объединение и пересечение промежутков.

Зависимость величин, функция, аргумент и значение, основные свойства функций. График функции. Линейная функция. Ее график. Угловой коэффициент прямой.

Квадратичная функция. График и свойства квадратичной функции. график функции . График функции .

Нули функции, промежутки знакопостоянства, монотонность (возрастание или убывание) на числовом промежутке. Наибольшее и наименьшее значение функции. Периодические функции и наименьший период.

Градусная мера угла. Тригонометрическая окружность. Определение синуса, косинуса, тангенса произвольного угла. Основное тригонометрическое тождество. Значения тригонометрических функций для углов 0, 30, 45, 60, 90, 180, 270.

Графики тригонометрических функций .

Решение простейших тригонометрических уравнений с помощью тригонометрической окружности.

Понятие степени с действительным показателем. Простейшие показательные уравнения и неравенства. Показательная функция и ее график.

Логарифм числа, основные свойства логарифма. Десятичный логарифм. Простейшие логарифмические уравнения и неравенства. Логарифмическая функция и ее график.

Понятие степенной функции и ее график. Простейшие иррациональные уравнения.

Касательная к графику функции. Понятие производной функции в точке как тангенс угла наклона касательной. Геометрический и физический смысл производной. Производные многочленов.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума с помощью производной. Наглядная интерпретация.

Понятие первообразной функции. Физический смысл первообразной. Понятие об интеграле как площади под графиком функции.



Геометрия

Фигуры на плоскости и в пространстве. Длина и площадь. Периметры и площади фигур.

Параллельность и перпендикулярность прямых и плоскостей.

Треугольники. Виды треугольников: остроугольные, тупоугольные, прямоугольные. Катет против угла в 30 градусов. Внешний угол треугольника.

Биссектриса, медиана и высота треугольника. Равенство треугольников.

Решение задач на клетчатой бумаге.

Равнобедренный треугольник, равносторонний треугольник. Свойства равнобедренного треугольника.

Соотношения между сторонами и углами в прямоугольном треугольнике. Тригонометрические функции углов в прямоугольном треугольнике. Теорема Пифагора. Применение теорем синусов и косинусов.

Четырехугольники: параллелограмм, ромб, прямоугольник, квадрат, трапеция и их свойства. Средняя линия треугольника и трапеции.

Выпуклые и невыпуклые фигуры. Периметр многоугольника. Правильный многоугольник.

Углы на плоскости и в пространстве. Вертикальные и смежные углы.

Сумма внутренних углов треугольника и четырехугольника.

Соотношения в квадрате и равностороннем треугольнике.

Диагонали многоугольника.

Подобные треугольники в простейших случаях.

Формулы площади прямоугольника, треугольника, ромба, трапеции.

Окружность и круг. Радиус и диаметр. Длина окружности и площадь круга. Число . Вписанный угол, в частности угол, опирающийся на диаметр. Касательная к окружности и ее свойство.

Куб. Соотношения в кубе.

Тетраэдр, правильный тетраэдр.

Правильная пирамида и призма. Прямая призма.

Изображение некоторых многогранников на плоскости.

Прямоугольный параллелепипед. Теорема Пифагора в пространстве.

Задачи на вычисление расстояний в пространстве с помощью теоремы Пифагора.

Развертка прямоугольного параллелепипеда.

Конус, цилиндр, шар и сфера.

Проекции фигур на плоскость. Изображение цилиндра, конуса и сферы на плоскости.

Понятие об объемах тел. Использование для решения задач на нахождение геометрических величин формул объема призмы, цилиндра, пирамиды, конуса, шара.

Понятие о подобии на плоскости и в пространстве. Отношение площадей и объемов подобных фигур.



Вероятность и статистика. Логика и комбинаторика

Логика. Верные и неверные утверждения. Следствие. Контрпример.

Множество. Перебор вариантов.

Таблицы. Столбчатые и круговые диаграммы.

Числовые наборы. Среднее арифметическое, медиана, наибольшее и наименьшее значения. Примеры изменчивых величин.

Частота и вероятность события. Случайный выбор. Вычисление вероятностей событий в опытах с равновозможными элементарными событиями.

Независимые события. Формула сложения вероятностей.

Примеры случайных величин. Равномерное распределение. Примеры нормального распределения в природе. Понятие о законе больших чисел.



Основная базовая программа

Алгебра и начала анализа

Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений.

Решение задач с использованием градусной меры угла. Модуль числа и его свойства.

Решение задач на движение и совместную работу с помощью линейных и квадратных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков.

Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности и функции . Графическое решение уравнений и неравенств.

Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0, 30, 45, 60, 90, 180, 270. ( рад). Формулы сложения тригонометрических функций, формулы приведения, формулы двойного аргумента..

Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность и нечетность функций. Сложные функции.

Тригонометрические функции . Функция . Свойства и графики тригонометрических функций.

Арккосинус, арксинус, арктангенс числа. Арккотангенс числа. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.

Обратные тригонометрические функции, их свойства и графики. Решение простейших тригонометрических неравенств.

Степень с действительным показателем, свойства степени. Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график.

Логарифм числа, свойства логарифма. Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.

Степенная функция и ее свойства и график. Иррациональные уравнения.

Метод интервалов для решения неравенств.

Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических неравенств.

Взаимно обратные функции. Графики взаимно обратных функций.

Уравнения, системы уравнений с параметром.

Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Правила дифференцирования.

Вторая производная, ее геометрический и физический смысл.

Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.

Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла.



Геометрия

Повторение. Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с помощью векторов и координат.

Наглядная стереометрия. Фигуры и их изображения (куб, пирамида, призма). Основные понятия стереометрии и их свойства. Сечения куба и тетраэдра.

Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них. Взаимное расположение прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости.

Расстояния между фигурами в пространстве.

Углы в пространстве. Перпендикулярность прямых и плоскостей.

Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трех перпендикулярах.

Многогранники. Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды.

Тела вращения: цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости.

Представление об усеченном конусе, сечения конуса (параллельное основанию и проходящее через вершину), сечения цилиндра (параллельно и перпендикулярно оси), сечения шара. Развертка цилиндра и конуса.

Простейшие комбинации многогранников и тел вращения между собой. Вычисление элементов пространственных фигур (ребра, диагонали, углы).

Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара.

Понятие об объеме. Объем пирамиды и конуса, призмы и цилиндра. Объем шара.

Подобные тела в пространстве. Соотношения между площадями поверхностей и объемами подобных тел.

Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач.

Векторы и координаты в пространстве. Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трем некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объемов.

Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве.



Вероятность и статистика. Работа с данными

Повторение. Решение задач на табличное и графическое представление данных. Использование свойств и характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии. Решение задач на определение частоты и вероятности событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики. Решение задач на вычисление вероятностей независимых событий, применение формулы сложения вероятностей. Решение задач с применением диаграмм Эйлера, дерева вероятностей, формулы Бернулли.

Условная вероятность. Правило умножения вероятностей. Формула полной вероятности.

Дискретные случайные величины и распределения. Независимые случайные величины. Распределение суммы и произведения независимых случайных величин.

Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Геометрическое распределение. Биномиальное распределение и его свойства.

Непрерывные случайные величины. Понятие о плотности вероятности. Равномерное распределение.

Показательное распределение, его параметры.

Понятие о нормальном распределении. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека).

Неравенство Чебышева. Теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.

Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции.



Углубленный уровень

Алгебра и начала анализа

Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений. Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу, смеси и сплавы с помощью линейных, квадратных и дробно-рациональных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности и функции . Графическое решение уравнений и неравенств. Использование операций над множествами и высказываниями. Использование неравенств и систем неравенств с одной переменной, числовых промежутков, их объединений и пересечений. Применение при решении задач свойств арифметической и геометрической прогрессии, суммирования бесконечной сходящейся геометрической прогрессии.

Множества (числовые, геометрических фигур). Характеристическое свойство, элемент множества, пустое, конечное, бесконечное множество. Способы задания множеств Подмножество. Отношения принадлежности, включения, равенства. Операции над множествами. Круги Эйлера. Конечные и бесконечные, счетные и несчетные множества.

Истинные и ложные высказывания, операции над высказываниями. Алгебра высказываний. Связь высказываний с множествами. Кванторы существования и всеобщности.

Законы логики. Основные логические правила. Решение логических задач с использованием кругов Эйлера, основных логических правил.

Умозаключения. Обоснования и доказательство в математике. Теоремы. Виды математических утверждений. Виды доказательств. Математическая индукция. Утверждения: обратное данному, противоположное, обратное противоположному данному. Признак и свойство, необходимые и достаточные условия.

Основная теорема арифметики. Остатки и сравнения. Алгоритм Евклида. Китайская теорема об остатках. Малая теорема Ферма. q-ичные системы счисления. Функция Эйлера, число и сумма делителей натурального числа.

Радианная мера угла, тригонометрическая окружность. Тригонометрические функции чисел и углов. Формулы приведения, сложения тригонометрических функций, формулы двойного и половинного аргумента. Преобразование суммы, разности в произведение тригонометрических функций, и наоборот.

Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции и наименьший период. Четные и нечетные функции. Функции «дробная часть числа» и «целая часть числа» .

Тригонометрические функции числового аргумента , , , . Свойства и графики тригонометрических функций.

Обратные тригонометрические функции, их главные значения, свойства и графики. Тригонометрические уравнения. Однородные тригонометрические уравнения. Решение простейших тригонометрических неравенств. Простейшие системы тригонометрических уравнений.

Степень с действительным показателем, свойства степени. Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график. Число и функция .

Логарифм, свойства логарифма. Десятичный и натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.

Степенная функция и ее свойства и график. Иррациональные уравнения.

Первичные представления о множестве комплексных чисел. Действия с комплексными числами. Комплексно сопряженные числа. Модуль и аргумент числа. Тригонометрическая форма комплексного числа. Решение уравнений в комплексных числах.

Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг, умножение на число, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических и иррациональных неравенств.

Взаимно обратные функции. Графики взаимно обратных функций.

Уравнения, системы уравнений с параметром.

Формула Бинома Ньютона. Решение уравнений степени выше 2 специальных видов. Теорема Виета, теорема Безу. Приводимые и неприводимые многочлены. Основная теорема алгебры. Симметрические многочлены. Целочисленные и целозначные многочлены.

Диофантовы уравнения. Цепные дроби. Теорема Ферма о сумме квадратов.

Суммы и ряды, методы суммирования и признаки сходимости.

Теоремы о приближении действительных чисел рациональными.

Множества на координатной плоскости.

Неравенство Коши–Буняковского, неравенство Йенсена, неравенства о средних.

Понятие предела функции в точке. Понятие предела функции в бесконечности. Асимптоты графика функции. Сравнение бесконечно малых и бесконечно больших. Непрерывность функции. Свойства непрерывных функций. Теорема Вейерштрасса.

Дифференцируемость функции. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Применение производной в физике. Производные элементарных функций. Правила дифференцирования.

Вторая производная, ее геометрический и физический смысл.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач. Нахождение экстремумов функций нескольких переменных.

Первообразная. Неопределенный интеграл. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла..

Методы решения функциональных уравнений и неравенств.



Геометрия

Повторение. Решение задач с использованием свойств фигур на плоскости. Решение задач на доказательство и построение контрпримеров. Применение простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисления длин и площадей. Решение задач с помощью векторов и координат.

Наглядная стереометрия. Призма, параллелепипед, пирамида, тетраэдр.

Основные понятия геометрии в пространстве. Аксиомы стереометрии и следствия из них. Понятие об аксиоматическом методе.

Теорема Менелая для тетраэдра. Построение сечений многогранников методом следов. Центральное проектирование. Построение сечений многогранников методом проекций.

Скрещивающиеся прямые в пространстве. Угол между ними. Методы нахождения расстояний между скрещивающимися прямыми.

Теоремы о параллельности прямых и плоскостей в пространстве. Параллельное проектирование и изображение фигур. Геометрические места точек в пространстве.

Перпендикулярность прямой и плоскости. Ортогональное проектирование. Наклонные и проекции. Теорема о трех перпендикулярах.

Виды тетраэдров. Ортоцентрический тетраэдр, каркасный тетраэдр, равногранный тетраэдр. Прямоугольный тетраэдр. Медианы и бимедианы тетраэдра.

Достраивание тетраэдра до параллелепипеда.

Расстояния между фигурами в пространстве. Общий перпендикуляр двух скрещивающихся прямых.

Углы в пространстве. Перпендикулярные плоскости. Площадь ортогональной проекции. Перпендикулярное сечение призмы. Трехгранный и многогранный угол. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трехгранного угла. Теоремы косинусов и синусов для трехгранного угла.

Виды многогранников. Развертки многогранника. Кратчайшие пути на поверхности многогранника.

Теорема Эйлера. Правильные многогранники. Двойственность правильных многогранников.

Призма. Параллелепипед. Свойства параллелепипеда. Прямоугольный параллелепипед. Наклонные призмы.

Пирамида. Виды пирамид. Элементы правильной пирамиды. Пирамиды с равнонаклоненными ребрами и гранями, их основные свойства.

Площади поверхностей многогранников.

Тела вращения: цилиндр, конус, шар и сфера. Сечения цилиндра, конуса и шара. Шаровой сегмент, шаровой слой, шаровой сектор (конус).

Усеченная пирамида и усеченный конус.

Элементы сферической геометрии. Конические сечения.

Касательные прямые и плоскости. Вписанные и описанные сферы. Касающиеся сферы. Комбинации тел вращения.

Векторы и координаты. Сумма векторов, умножение вектора на число. Угол между векторами. Скалярное произведение.

Уравнение плоскости. Формула расстояния между точками. Уравнение сферы. Формула расстояния от точки до плоскости. Способы задания прямой уравнениями.

Решение задач и доказательство теорем с помощью векторов и методом координат. Элементы геометрии масс.

Понятие объема. Объемы многогранников. Объемы тел вращения. Аксиомы объема. Вывод формул объемов прямоугольного параллелепипеда, призмы и пирамиды. Формулы для нахождения объема тетраэдра. Теоремы об отношениях объемов.

Приложения интеграла к вычислению объемов и поверхностей тел вращения. Площадь сферического пояса. Объем шарового слоя. Применение объемов при решении задач.

Площадь сферы.

Развертка цилиндра и конуса. Площадь поверхности цилиндра и конуса.

Комбинации многогранников и тел вращения.

Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур.

Движения в пространстве: параллельный перенос, симметрия относительно плоскости, центральная симметрия, поворот относительно прямой.

Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.



Вероятность и статистика, логика, теория графов и комбинаторика

Повторение. Использование таблиц и диаграмм для представления данных. Решение задач на применение описательных характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии и стандартного отклонения. Вычисление частот и вероятностей событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Использование комбинаторики. Вычисление вероятностей независимых событий. Использование формулы сложения вероятностей, диаграмм Эйлера, дерева вероятностей, формулы Бернулли.

Вероятностное пространство. Аксиомы теории вероятностей.

Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Формула Байеса.

Дискретные случайные величины и распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин.

Бинарная случайная величина, распределение Бернулли. Геометрическое распределение. Биномиальное распределение и его свойства. Гипергеометрическое распределение и его свойства.

Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение.

Показательное распределение, его параметры.

Распределение Пуассона и его применение. Нормальное распределение. Функция Лапласа. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека). Центральная предельная теорема.

Неравенство Чебышева. Теорема Чебышева и теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.

Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции. Линейная регрессия.

Статистическая гипотеза. Статистика критерия и ее уровень значимости. Проверка простейших гипотез. Эмпирические распределения и их связь с теоретическими распределениями. Ранговая корреляция.

Построение соответствий. Инъективные и сюръективные соответствия. Биекции. Дискретная непрерывность. Принцип Дирихле.

Кодирование. Двоичная запись.

Основные понятия теории графов. Деревья. Двоичное дерево. Связность. Компоненты связности. Пути на графе. Эйлеровы и Гамильтоновы пути.















РАЗДЕЛ 3. Тематическое планирование

Тематическое планирование по математике в 10-11 классе

(I- полугодие - 6 часов в неделю, II-полугодие - 6 часов в неделю, всего 414 часов)



Тематическое планирование по математике в 10 классе

(I-полугодие -6 часов в неделю, II-полугодие-6 часов в неделю, всего 210 часов)


п/п

Тема

Кол-во

часов

1

Повторение

5


2

Действительные числа

Понятие действи­тельного числа. Множества чисел. Свойства действи­тельных чисел. Метод математиче­ской индукции. Перестановки. Размещение. Сочетания. Доказательство чи­словых неравенств. Сравнение по мо­дулю m. Задачи с целочис­ленными неизвест­ными.

7

3

Рациональные уравнения и неравенства

Рациональные выражения. Формулы бинома Ньютона, суммы и разности степеней. Деление многочле­нов с остатком. Ал­горитм Евклида. Теорема Безу. Корень многочлена. Рациональные уравнения. Системы рацио­нальных уравнений. Метод интервалов решения неравенств. Рациональные не­равенства. Нестрогие неравен­ства. Системы рацио­нальных неравенств.

22

4

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. Существование плоскости, проходящей через данную прямую и данную точку. Замечание к аксиоме IПересечение прямой с плоскостью. Существование плоскости, проходящей через три данные точки. Разбиение пространства плоскостью на два полупространства.

6

5

Параллельность прямых и плоскостей

Параллельные прямые в пространстве. Признак параллельности прямых. Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Существование плоскости, параллельной данной плоскости. Свойства параллельных плоскостей. Изображение пространственных фигур на плоскости.

15

6

Корень степени n

Понятие функции и её графика. Функция y=xⁿ. Понятие корня сте­пени n. Корни четной и не­четной степени. Арифметический корень. Свойства корней степени n. Функция y=ⁿ√x, x≥0. Функция y=ⁿ√x.

16

7

Перпендикулярность прямых и плоскостей

Перпендикулярность прямых в пространстве. Признак перпендикулярности прямой и плоскости. Построение перпендикулярных прямой и плоскости. Свойства перпендикулярных прямой и плоскости. Перпендикуляр и наклонная. Теорема о трёх перпендикулярах. Признак перпендикулярности плоскостей. Расстояние между скрещивающимися прямыми.

20

8

Степень положительного числа

Степень с рацио­нальным показате­лем. Свойства степени с рациональным по­казателем. Понятие предела последовательности. Свойства пределов. Бесконечно убы­вающая геометри­ческая прогрессия. Число e. Понятие степени с иррациональным показателем.

Показательная функция.

15

9

Декартовы координаты и векторы в пространстве

Введение декартовых координат в пространстве. Расстояние между точками. Координаты середины отрезка. Преобразование симметрии в пространстве. Симметрия в природе и на практике. Движение в пространстве. Параллельный перенос в пространстве. Подобие пространственных фигур. Угол между скрещивающимися прямыми. Угол между прямой и плоскостью. Угол между плоскостями. Площадь ортогональной проекции многоугольника. Векторы в пространстве. Действия над векторами в пространстве. Разложение вектора по трём некомпланарным векторам. Уравнение плоскости.

20

10

Логарифмы

Понятие логарифма. Свойства логариф­мов. Логарифмическая функция. Десятичные лога­рифмы. Степенная функция.

8

11

Показательные и логарифмические уравнения и неравенства

Простейшие пока­зательные уравне­ния. Простейшие лога­рифмические урав­нения. Уравнения, сводя­щиеся к простей­шим заменой неиз­вестного. Простейшие пока­зательные неравен­ства. Простейшие лога­рифмические нера­венства. Неравенства, сво­дящиеся к про­стейшим заменой неизвестного.

10

12

Синус, косинус угла

Понятие угла. Радианная мера угла. Определение си­нуса и косинуса угла. Основные формулы для sinά и cosά. Арксинус. Арккосинус. Примеры использо­вания арксинус и арккосинус. Формулы для арк­синуса и арккоси­нуса.

9

13

Тангенс и котангенс угла

Определение тан­генса и котангенса угла. Основные формулы для tgά и ctgά. Арктангенс. Арккотангенс. Примеры использо­вания арктангенса и арккотангенса. Формулы для арк­тангенса и аркко­тангенса.

10

14

Формулы сложения

Косинус разности и косинус суммы двух углов. Формулы для до­полнительных уг­лов. Синус суммы и си­нус разности двух углов. Сумма и разность синусов и косинуса. Формулы для двой­ных и половинных углов. Произведение си­нусов и косинусов.Формулы для тан­генсов.

7

15

Тригонометрические функции числового аргумента

Функция y=sinx. Функция y=cosx. Функция y=tgx. Функция y=ctgx.

11

16

Тригонометрические уравнения и неравенства

Простейшие триго­нометрические уравнения. Уравнения, сводя­щиеся к простей­шим заменой неиз­вестного. Применение основ­ных тригонометри­ческих формул для решения уравнений. Однородные урав­нения. Простейшие нера­венства для синуса и косинуса. Простейшие нера­венства для тан­генса и котангенса. Неравенства, сво­дящиеся к про­стейшим заменой неизвестного. Введение вспомо­гательного угла. Замена неизвест­ного

t=sinx + cosx

15

17

Элементы теории вероятностей

Понятие вероятно­сти события. Свойства вероятно­стей. Относительная час­тота событий. Условная вероят­ность. Независи­мость событий. Математическое ожидание. Сложный опыт. Формула Бернулли. Закон больших чи­сел

6

18

Повторение

8


Итого:

210
















Тематическое планирование по математике в 11 классе

(I-полугодие -6 часов в неделю, II-полугодие-6 часов в неделю, всего 204 часов)


п/п

Тема

Кол-во

часов

1

Повторение

5


2

Функции и их графики

Элементарные функции. Область определения, область изменения, ограниченность функции. Четность, нечетность, периодичность функции. Промежутки возрастания, убывания, знакопостоянства и нули функции. Исследование функции и построение их графиков элементарными методами. Основные способы преобразования графиков.

Графики функций, содержащих модули. Графики сложных функций.

9

3

Предел функции и непрерывность

Понятие предела функции. Односторонние пределы. Свойства пределов функций. Понятие непрерывности функции. Непрерывность элементарных функций. Разрывные функции.

5

4

Обратные функции

Понятие обратной функции. Взаимно обратные функции. Обратные тригонометрические функции. Примеры использования обратных тригонометрических функций

6

5

Многогранники

Двугранный, трехгранный и многогранный углы. Многогранник. Призма. Изображение призмы и построение её сечений. Прямая призма. Параллелепипед. Прямоугольный параллелепипед. Пирамида. Построение пирамиды и её плоских сечений. Усеченная пирамида. Правильная пирамида. Теорема Эйлера. Правильные многогранники. Решение задач по теме: «Правильные многогранники».

22

6

Производная

Понятие производной. Производная суммы. Производная разности. Непрерывность функций, имеющих производную. Дифференциал. Производная произведения и частного.

Производные элементарных функций. Производная сложной функции. Производная обратной функции.

11

7

Тела вращения

Цилиндр. Сечение цилиндра плоскостями. Вписанная и описанная призмы. Конус. Сечение конуса плоскостями. Вписанная и описанная пирамиды. Шар. Сечение шара плоскостью. Симметрия шара. Касательная плоскость к шару.

12

8

Применение производной

Максимум и минимум функции. Уравнение касательной. Приближенные вычисления. Теоремы о среднем. Возрастание и убывание функции. Производные высших порядков. Выпуклость графика функции. Экстремум функции с единственной критической точкой. Задачи на максимум и минимум. Асимптоты. Дробно-линейная функция. Формула и ряд Тейлора.

16

9

Объёмы многогранников

Понятие объёма. Объём прямоугольного параллелепипеда. Объём наклонного параллелепипеда. Объём призмы. Равновеликие тела. Объём пирамиды. Объём усеченной пирамиды. Объёмы подобных тел.

10

10

Первообразная и интеграл

Понятие первообразной. Замена переменной. Интегрирование по частям. Площадь криволинейной трапеции. Определенный интеграл. Приближенное вычисление определенного интеграла. Формула Ньютона-Лейбница. Свойства определенного интеграла. Применение определенных интегралов в геометрических и физических задачах. Понятие дифференциального уравнения. Задачи, приводящие к дифференциальным уравнениям

13

11

Объёмы и поверхности тел вращения

Объем цилиндра. Объем конуса. Объем усеченного конуса. Объем шара. Объем шарового сегмента и сектора. Площадь боковой поверхности цилиндра. Площадь боковой поверхности конуса. Площадь сферы.

9

12

Равносильность уравнений и неравенств

Равносильные преобразования уравнений. Равносильные преобразования неравенств.

4

13

Уравнения- следствия

Понятие уравнения-следствия. Возведение уравнения в четную степень. Потенцирование логарифмических уравнений. Другие преобразования, приводящие к уравнению-следствию. Применение нескольких преобразований, приводящих к уравнению-следствию.

7

14

Равносильность уравнений и неравенств системам

Основные понятия. Решение уравнений с помощью систем. Уравнения вида f(а(х))=f(в(х)). Решение неравенств с помощью систем. Неравенства вида f(а(х))f(в(х)).

13

15

Равносильность уравнений на множествах

Основные понятия. Возведение уравнения в чётную степень. Умножение уравнения на функцию. Другие преобразования уравнений. Применение нескольких преобразований.

Уравнения с дополнительными условиями.

8

16

Равносильность неравенств на множествах

Основные понятия. Возведение неравенства в чётную степень. Умножение неравенства на функцию. Другие преобразования неравенств. Применение нескольких преобразований. Неравенства с дополнительными условиями. Нестрогие неравенства.

6

17

Метод промежутков для уравнений и неравенств

Уравнения с модулями. Неравенства с модулями. Метод интервалов для непрерывных функций.

4

18

Использование свойств функций при решении уравнений и неравенств

Использование областей существования функций. Использование неотрицательных функций. Использование ограниченности функции. Использование монотонности и экстремумов функций. Использование свойств синуса и косинуса

4

19

Системы уравнений с несколькими переменными

Равносильность систем. Система-следствие. Метод замены неизвестных. Рассуждения с числовыми значениями при решении систем уравнений.

8

20

Уравнения, неравенства и системы с параметрами

Уравнения с параметром. Неравенства с параметром. Системы уравнений с параметром. Задачи с условиями.

5

21

Алгебраическая форма комплексного числа

Алгебраическая форма комплексного числа. Сопряженные комплексные числа. Геометрическая интерпретация комплексного числа.

2

22

Тригонометрическая форма комплексного числа

Тригонометрическая форма комплексного числа. Корни из комплексных чисел и их свойства

2

23

Корни многочленов. Показательная форма комплексного числа

Корни многочленов. Показательная форма комплексного числа.

2

24

Избранные вопросы планиметрии.

( Повторение. Подготовка к ЕГЭ )

Решение треугольников. Вычисление биссектрис и медиан треугольника. Формула Герона и другие формулы для нахождения площади треугольника. Теорема Чевы. Теорема Менелая. Свойства и признаки вписанных и описанных многоугольников. Углы в окружности. Метрические соотношения в окружности. Геометрические места точек в задачах на построение. Геометрические преобразования в задачах на построение

О разрешимости задач на построение. Эллипс, гипербола, парабола.Решение задач по планиметрии. Подготовка к ЕГЭ

10

25

Повторение

Повторение курса математики за 10-11 классы.

Подготовка к ЕГЭ

11


Итого:

204








1 Здесь и далее: распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

2 Здесь и далее; знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, решении задач.

3 Здесь и далее: знать определение понятия, знать и уметь обосновывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.