СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Вычисление неопределенных интегралов

Категория: Математика

Нажмите, чтобы узнать подробности

Представлено практическое занятие по вычислению неопределенных интегралов методом непосредственного интегрирования и методом замены переменной. Описанные методы иллюстрированы примерами. Приведены задания для самостоятельной работы.

Просмотр содержимого документа
«Вычисление неопределенных интегралов»

Вычисление неопределенных интегралов


1. Метод непосредственного интегрирования

Повторим изученный на предыдущем уроке материал. Посмотрим на таблицу интегралов. Как и в производных, мы замечаем несколько правил интегрирования и таблицу интегралов от некоторых элементарных функций. Нетрудно заметить, что любой табличный интеграл (да и вообще любой неопределенный интеграл) имеет вид:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

– первообразная функции.

– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части у нас превращаются в другие функции: .

У простим наше определение.

Р ешить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию пользуясь некоторыми правилами, приемами и таблицей.

Возьмем, например, табличный интеграл. Что произошло? превратился в функцию .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в случае  совсем не обязательно понимать, почему интеграл  превращается именно в . Пока можно принять эту и другие формулы как данность.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:

И ными словами, если продифференцировать правильный ответ, то обязательно должна получиться исходная подынтегральная функция.

Вернемся к тому же табличному интегралу .

Убедимся в справедливости данной формулы. Берем производную от правой части:

– исходная подынтегральная функция.

Вот, кстати, стало понятнее, почему к функции всегда приписывается константа . При дифференцировании константа всегда превращается в ноль.

П ереходим к рассмотрению конкретных примеров. Начнем, как и при изучении производной, с двух правил интегрирования, которые также называют свойствами линейности неопределенного интеграла:

– постоянный множитель можно (и нужно) вынести за знак интеграла.

– интеграл от алгебраической суммы двух функций равен алгебраической сумме двух интегралов от каждой функции в отдельности. Данное свойство справедливо для любого количества слагаемых.

Как видите, правила, в принципе, такие же, как и для производных.



Пример 1

Найти неопределенный интеграл:

Решение:

(1) Применяем правило . Не забываем записать значок дифференциала под каждым интегралом. Почему под каждым?  – это полноценный множитель, если расписывать решение совсем детально, то первый шаг следует записать так:

(2) Согласно правилу , выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом  – это константа, её также выносим. Кроме того, на данном шаге готовим корни и степени для интегрирования. Точно так же, как и при дифференцировании, корни надо представить в виде . Корни и степени, которые располагаются в знаменателе – перенести вверх.

! Примечание: в отличие от производных, корни в интегралах далеко не всегда следует приводить к виду , а степени переносить вверх. Например, – это готовый табличный интеграл, и всякие китайские хитрости вроде  совершенно не нужны. Аналогично:  – тоже табличный интеграл, нет никакого смысла представлять дробь  в виде .

Внимательно изучите таблицу!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: ,  и .

Особое внимание обращаю на формулу интегрирования степенной функции , она встречается очень часто, ее лучше запомнить. Следует отметить, что табличный интеграл  – частный случай этой же формулы: .

Константу  достаточно приплюсовать один раз в конце выражения (а не ставить их после каждого интеграла).

(4) Записываем полученный результат в более компактном виде, все степени вида  снова представляем в виде корней, степени с отрицательным показателем – сбрасываем обратно в знаменатель.

Пример 2

Найти неопределенный интеграл:

Решение: Анализируя интеграл, мы видим, что у нас произведение двух функций, да еще и возведение в степень целого выражения. К сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного , .

А поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму?

Рассматриваемый пример – тот случай, когда можно. Сначала я приведу полное решение, комментарии будут ниже.

(1) Используем старую-добрую формулу квадрата суммы , избавляясь от степени.

(2) Вносим  в скобку, избавляясь от произведения.

( 3) Используем свойства линейности интеграла (оба правила сразу).

(4) Превращаем интегралы по табличной формуле .

(5) Упрощаем ответ. Здесь следует обратить внимание на обыкновенную неправильную дробь  – она несократима и в ответ входит именно в таком виде. Не нужно делить на калькуляторе ! Не нужно представлять ее в виде !

Пример 3

Найти неопределенный интеграл.

В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, а значит, можно почленно разделить числитель на знаменатель:

Действия с дробными степенями я не комментирую, так как о них неоднократно шла речь в статьях о производной функции. Если Вас все-таки ставит в тупик такой пример, как , и ни в какую не получается правильный ответ , то рекомендую обратиться к школьным учебникам. В высшей математике дроби и действия с ними встречаются на каждом шагу.

Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно уже при начальном опыте решения интегралов данные свойства считают само собой разумеющимися и не расписывают подробно.

2. Метод замены переменной

Переходим к рассмотрению следующего метода – метода замены переменных в неопределенном интеграле.

Пример 4

Найти неопределенный интеграл.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой. В данном случае напрашивается: Вторая по популярности буква для замены – это буква . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.





Итак: Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу  там совсем не место. Следует логичный вывод, что  нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал .

Так как , то

Т еперь по правилам пропорции выражаем нужный нам :







Таким образом:

А это уже самый что ни на есть табличный интеграл

В заключении осталось провести обратную замену. Вспоминаем, что .

Готово.

Оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену:

Пример 5

Найти неопределенный интеграл:

Проведем замену:  (другую замену здесь трудно придумать)

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл.

Пример 6

Найти неопределенный интеграл:

Замена:

Осталось выяснить, во что превратится

Хорошо,  мы выразили, но что делать с оставшимся в числителе «иксом»?! Время от времени в ходе решения интегралов встречается следующий трюк:  мы выразим из той же замены !

Пример 7

Найти неопределенный интеграл:

В рассматриваемом примере замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу.

Замена:

Кстати, здесь не так сложно подвести функцию под знак дифференциала:



Самостоятельная работа



Самостоятельная работа

Тема: Вычисление неопределенных интегралов


Вариант № 1


Вычислите интегралы:

1.

2.

3.




Самостоятельная работа

Тема: Вычисление неопределенных интегралов


Вариант № 2


Вычислите интегралы:

1.

2.

3.



10