Просмотр содержимого документа
«Диагностическая работа "Графики на ОГЭ"»
Диагностическая работа №2 (октябрь). Модуль «Алгебра».
Вариант -1.
11.1 Установите соответствие между графиками и формулами
А. Б. В.
1) 2)
3) 4)
Заполните таблицу
11.2 Найти область определения функции
11.3 Найти область определения функции
11.4 Вычислите координаты точки пересечения параболы и прямой .
11. 5
На рисунке изображен график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Наименьшее значение функции равно -5.
2) Функция убывает на промежутке
3) при и при
Часть 2.
20.1 Решите неравенство
22.1 Постройте график функции и найдите все значения а, при которых прямая у = а имеет с графиком данной функции ровно три общие точки.
Диагностическая работа №2 (октябрь). Модуль «Алгебра».
Вариант -2.
11.1 Установите соответствие между графиками и формулами
А. Б. В.
1) 2)
3) 4)
Заполните таблицу
11.2 Найти область определения функции
11.3 Найти область определения функции
11.4 Вычислите координаты точки пересечения параболы и прямой .
11. 5
На рисунке изображен график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Наименьшее значение функции равно 2,5.
2) Функция убывает на промежутке
3) при и при
Часть 2.
20.1 Решите неравенство
22.1 Постройте график функции и найдите все значения а, при которых прямая у = а имеет с графиком данной функции ровно три общие точки.
Диагностическая работа №2 (октябрь). Модуль «Алгебра».
Вариант -3.
11.1 Установите соответствие между графиками и формулами
А. Б. В.
1) 2)
3) 4)
Заполните таблицу
11.2 Найти область определения функции
11.3 Найти область определения функции
11.4 Вычислите координаты точки пересечения параболы и прямой .
11. 5
На рисунке изображен график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Наименьшее значение функции равно 10.
2) Функция возрастает на промежутке
3) при и при
Часть 2.
20.1 Решите неравенство
22.1 Постройте график функции и найдите все значения а, при которых прямая у = а имеет с графиком данной функции ровно одну общую точку.