1. Тип 1 № 27640
Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.
2. Тип 2 № 27720
Стороны правильного треугольника ABC равны
Найдите длину вектора
3. Тип 3 № 27067
Прямоугольный параллелепипед описан около сферы радиуса 1. Найдите его площадь поверхности.
4. Тип 4 № 509412
У Вити в копилке лежит 12 рублёвых, 6 двухрублёвых, 4 пятирублёвых и 3 десятирублёвых монеты. Витя наугад достаёт из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит более 70 рублей.
5. Тип 5 № 509303
В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
6. Тип 6 № 101879
Решите уравнение
Если уравнение имеет более одного корня, в ответе запишите больший из корней.
7. Тип 7 № 26819
Найдите значение выражения
если
а
8. Тип 8 № 27500
На рисунке изображен график производной функции f(x), определенной на интервале (−2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.
9. Тип 9 № 27985
Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле
где
км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?
10. Тип 10 № 99579
Бригада маляров красит забор длиной 240 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 60 метров забора. Определите, сколько дней бригада маляров красила весь забор.
11. Тип 11 № 509089
На рисунке изображён график функции
Найдите
12. Тип 12 № 245180
Найдите наибольшее значение функции
13. Тип 13 № 517739
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
14. Тип 14 № 520784
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC — диаметр основания. Известно,что
а) Докажите, что угол между прямыми
и BC равен
б) Найдите объём цилиндра.
15. Тип 15 № 515669
Решите неравенство
16. Тип 16 № 515804
15-го января планируется взять кредит в банке на сумму 2,4 млн рублей на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Какую сумму нужно выплатить банку в первые 12 месяцев?
17. Тип 17 № 517526
Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.
а) Докажите, что диагонали перпендикулярны.
б) Найдите площадь трапеции.
18. Тип 18 № 512886
Найдите все значения a, при которых уравнение
имеет ровно два различных корня.
19. Тип 19 № 524237
На конкурсе «Мисс−261» выступление каждой участницы оценивают шесть судей. Каждый судья выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что за выступление участницы С все члены жюри выставили различные оценки. По старой системе оценивания итоговый балл за выступление определяется как среднее арифметическое всех оценок судей. По новой системе оценивания итоговый балл вычисляется следующим образом: отбрасываются две наибольшие оценки, и считается среднее арифметическое четырех оставшихся оценок.
а) Может ли разность итоговых баллов, вычисленных по старой и новой системам оценивания, быть равной 18?
б) Может ли разность итоговых баллов, вычисленных по старой и новой системам оценивания, быть равной
в) Найдите наименьшее возможное значение разности итоговых баллов, вычисленных по старой и новой системам оценивания.