СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 12.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2024 Декабрь Математика Вариант 8

Категория: Математика

Нажмите, чтобы узнать подробности

  РЕШУ ЕГЭ — математика профильная Вариант № 79337492   1.   i

Ос­но­ва­ния тра­пе­ции равны 3 и 2. Най­ди­те от­ре­зок, со­еди­ня­ю­щий се­ре­ди­ны диа­го­на­лей тра­пе­ции.

        2.   i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры и Най­ди­те длину век­то­ра

        3.   i

От тре­уголь­ной приз­мы, объем ко­то­рой равен 6, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через сто­ро­ну од­но­го ос­но­ва­ния и про­ти­во­по­лож­ную вер­ши­ну дру­го­го ос­но­ва­ния. Най­ди­те объем остав­шей­ся части.

        4.   i

В фирме такси в на­ли­чии 50 лег­ко­вых ав­то­мо­би­лей; 27 из них чёрного цвета с жёлтыми над­пи­ся­ми на бор­тах, осталь­ные  — жёлтого цвета с чёрными над­пи­ся­ми. Най­ди­те ве­ро­ят­ность того, что на слу­чай­ный вызов при­е­дет ма­ши­на жёлтого цвета с чёрными над­пи­ся­ми.

        5.   i

Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Если ана­лиз вы­яв­ля­ет ге­па­тит, то ре­зуль­тат ана­ли­за на­зы­ва­ет­ся по­ло­жи­тель­ным. У боль­ных ге­па­ти­том па­ци­ен­тов ана­лиз даёт по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,9. Если па­ци­ент не болен ге­па­ти­том, то ана­лиз может дать лож­ный по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,01. Из­вест­но, что 5% па­ци­ен­тов, по­сту­па­ю­щих с по­до­зре­ни­ем на ге­па­тит, дей­стви­тель­но боль­ны ге­па­ти­том. Най­ди­те ве­ро­ят­ность того, что ре­зуль­тат ана­ли­за у па­ци­ен­та, по­сту­пив­ше­го в кли­ни­ку с по­до­зре­ни­ем на ге­па­тит, будет по­ло­жи­тель­ным.

        6.   i

Ре­ши­те урав­не­ние Если урав­не­ние имеет более од­но­го корня, в от­ве­те за­пи­ши­те мень­ший из кор­ней.

        7.   i

Най­ди­те если

        8.   i

На ри­сун­ке изоб­ражён гра­фик не­ко­то­рой функ­ции (два луча с общей на­чаль­ной точ­кой). Поль­зу­ясь ри­сун­ком, вы­чис­ли­те F(8) − F(2), где F(x)  — одна из пер­во­об­раз­ных функ­ции f(x).

        9.   i

После дождя уро­вень воды в ко­лод­це может по­вы­сить­ся. Маль­чик из­ме­ря­ет время t па­де­ния не­боль­ших ка­меш­ков в ко­ло­дец и рас­счи­ты­ва­ет рас­сто­я­ние до воды по фор­му­ле где h − рас­сто­я­ние в мет­рах, t − время па­де­ния в се­кун­дах. До дождя время па­де­ния ка­меш­ков со­став­ля­ло 0,6 с. На сколь­ко дол­жен под­нять­ся уро­вень воды после дождя, чтобы из­ме­ря­е­мое время из­ме­ни­лось на 0,2 с? Ответ вы­ра­зи­те в мет­рах.

        10.   i

Два мо­то­цик­ли­ста стар­ту­ют од­но­вре­мен­но в одном на­прав­ле­нии из двух диа­мет­раль­но про­ти­во­по­лож­ных точек кру­го­вой трас­сы, длина ко­то­рой равна 14 км. Через сколь­ко минут мо­то­цик­ли­сты по­рав­ня­ют­ся в пер­вый раз, если ско­рость од­но­го из них на 21 км/ч боль­ше ско­ро­сти дру­го­го?

        11.   i

На ри­сун­ке изоб­ра­же­ны гра­фи­ки функ­ций и ко­то­рые пе­ре­се­ка­ют­ся в точке A. Най­ди­те ор­ди­на­ту точки A.

        12.   i

Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке

        13.   i

а)  Ре­ши­те урав­не­ние

б)  Ука­жи­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку

          14.   i

На рёбрах CD и BB1 куба ABCDA1B1C1D1 с реб­ром 12 от­ме­че­ны точки Р и Q со­от­вет­ствен­но, причём DP  =  4, а B1Q  =  3. Плос­кость APQ пе­ре­се­ка­ет ребро CC1 в точке М.

а)  До­ка­жи­те, что точка М яв­ля­ет­ся се­ре­ди­ной ребра CC1.

б)  Най­ди­те рас­сто­я­ние от точки С до плос­ко­сти APQ.

          15.   i

Ре­ши­те не­ра­вен­ство:

          16.   i

Пен­си­он­ный фонд вла­де­ет цен­ны­ми бу­ма­га­ми, ко­то­рые стоят 10t тыс. руб­лей в конце года t (t  =  1, 2, ...). В конце лю­бо­го года пен­си­он­ный фонд может про­дать цен­ные бу­ма­ги и по­ло­жить день­ги на счёт в банке, при этом в конце каж­до­го сле­ду­ю­ще­го года сумма на счёте будет уве­ли­чи­вать­ся на 24%. В конце ка­ко­го года пен­си­он­но­му фонду сле­ду­ет про­дать цен­ные бу­ма­ги, чтобы в конце два­дца­то­го года сумма на его счёте была наи­боль­шей?

          17.   i

Точка E  — се­ре­ди­на бо­ко­вой сто­ро­ны CD тра­пе­ции ABCD. На сто­ро­не AB взяли точку K, так, что пря­мые CK и AE па­рал­лель­ны. От­рез­ки CK и BE пе­ре­се­ка­ют­ся в точке O.

а)  До­ка­жи­те, что CO  =  KO.

б)  Найти от­но­ше­ние ос­но­ва­ний тра­пе­ции BC и AD, если пло­щадь тре­уголь­ни­ка BCK со­став­ля­ет пло­ща­ди тра­пе­ции ABCD.

          18.   i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний имеет ровно два ре­ше­ния.

          19.   i

За­ду­ма­но не­сколь­ко (не обя­за­тель­но раз­лич­ных) на­ту­раль­ных чисел. Эти числа и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке не­убы­ва­ния. Если какое-то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, сти­ра­ют­ся. На­при­мер, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а)  При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 2, 4, 6, 8, 10.

б)  Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?

в)  При­ве­ди­те все при­ме­ры за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.

Показать полностью

Просмотр содержимого документа
«ЕГЭ 2024 Декабрь Математика Вариант 8»

РЕШУ ЕГЭ — математика профильная

Вариант № 79337492

1.  

i

Ос­но­ва­ния тра­пе­ции равны 3 и 2. Най­ди­те от­ре­зок, со­еди­ня­ю­щий се­ре­ди­ны диа­го­на­лей тра­пе­ции.

2.  

i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры и Най­ди­те длину век­то­ра

3.  

i

От тре­уголь­ной приз­мы, объем ко­то­рой равен 6, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через сто­ро­ну од­но­го ос­но­ва­ния и про­ти­во­по­лож­ную вер­ши­ну дру­го­го ос­но­ва­ния. Най­ди­те объем остав­шей­ся части.

4.  

i

В фирме такси в на­ли­чии 50 лег­ко­вых ав­то­мо­би­лей; 27 из них чёрного цвета с жёлтыми над­пи­ся­ми на бор­тах, осталь­ные  — жёлтого цвета с чёрными над­пи­ся­ми. Най­ди­те ве­ро­ят­ность того, что на слу­чай­ный вызов при­е­дет ма­ши­на жёлтого цвета с чёрными над­пи­ся­ми.

5.  

i

Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Если ана­лиз вы­яв­ля­ет ге­па­тит, то ре­зуль­тат ана­ли­за на­зы­ва­ет­ся по­ло­жи­тель­ным. У боль­ных ге­па­ти­том па­ци­ен­тов ана­лиз даёт по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,9. Если па­ци­ент не болен ге­па­ти­том, то ана­лиз может дать лож­ный по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,01. Из­вест­но, что 5% па­ци­ен­тов, по­сту­па­ю­щих с по­до­зре­ни­ем на ге­па­тит, дей­стви­тель­но боль­ны ге­па­ти­том. Най­ди­те ве­ро­ят­ность того, что ре­зуль­тат ана­ли­за у па­ци­ен­та, по­сту­пив­ше­го в кли­ни­ку с по­до­зре­ни­ем на ге­па­тит, будет по­ло­жи­тель­ным.

6.  

i

Ре­ши­те урав­не­ние Если урав­не­ние имеет более од­но­го корня, в от­ве­те за­пи­ши­те мень­ший из кор­ней.

7.  

i

Най­ди­те если

8.  

i

На ри­сун­ке изоб­ражён гра­фик не­ко­то­рой функ­ции (два луча с общей на­чаль­ной точ­кой). Поль­зу­ясь ри­сун­ком, вы­чис­ли­те F(8) − F(2), где F(x)  — одна из пер­во­об­раз­ных функ­ции f(x).

9.  

i

После дождя уро­вень воды в ко­лод­це может по­вы­сить­ся. Маль­чик из­ме­ря­ет время t па­де­ния не­боль­ших ка­меш­ков в ко­ло­дец и рас­счи­ты­ва­ет рас­сто­я­ние до воды по фор­му­ле где h − рас­сто­я­ние в мет­рах, t − время па­де­ния в се­кун­дах. До дождя время па­де­ния ка­меш­ков со­став­ля­ло 0,6 с. На сколь­ко дол­жен под­нять­ся уро­вень воды после дождя, чтобы из­ме­ря­е­мое время из­ме­ни­лось на 0,2 с? Ответ вы­ра­зи­те в мет­рах.

10.  

i

Два мо­то­цик­ли­ста стар­ту­ют од­но­вре­мен­но в одном на­прав­ле­нии из двух диа­мет­раль­но про­ти­во­по­лож­ных точек кру­го­вой трас­сы, длина ко­то­рой равна 14 км. Через сколь­ко минут мо­то­цик­ли­сты по­рав­ня­ют­ся в пер­вый раз, если ско­рость од­но­го из них на 21 км/ч боль­ше ско­ро­сти дру­го­го?

11.  

i

На ри­сун­ке изоб­ра­же­ны гра­фи­ки функ­ций и ко­то­рые пе­ре­се­ка­ют­ся в точке A. Най­ди­те ор­ди­на­ту точки A.

12.  

i

Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке

13.  

i

а)  Ре­ши­те урав­не­ние

б)  Ука­жи­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку

14.  

i

На рёбрах CD и BB1 куба ABCDA1B1C1D1 с реб­ром 12 от­ме­че­ны точки Р и Q со­от­вет­ствен­но, причём DP  =  4, а B1Q  =  3. Плос­кость APQ пе­ре­се­ка­ет ребро CC1 в точке М.

а)  До­ка­жи­те, что точка М яв­ля­ет­ся се­ре­ди­ной ребра CC1.

б)  Най­ди­те рас­сто­я­ние от точки С до плос­ко­сти APQ.

15.  

i

Ре­ши­те не­ра­вен­ство:

16.  

i

Пен­си­он­ный фонд вла­де­ет цен­ны­ми бу­ма­га­ми, ко­то­рые стоят 10t тыс. руб­лей в конце года t (t  =  1, 2, ...). В конце лю­бо­го года пен­си­он­ный фонд может про­дать цен­ные бу­ма­ги и по­ло­жить день­ги на счёт в банке, при этом в конце каж­до­го сле­ду­ю­ще­го года сумма на счёте будет уве­ли­чи­вать­ся на 24%. В конце ка­ко­го года пен­си­он­но­му фонду сле­ду­ет про­дать цен­ные бу­ма­ги, чтобы в конце два­дца­то­го года сумма на его счёте была наи­боль­шей?

17.  

i

Точка E  — се­ре­ди­на бо­ко­вой сто­ро­ны CD тра­пе­ции ABCD. На сто­ро­не AB взяли точку K, так, что пря­мые CK и AE па­рал­лель­ны. От­рез­ки CK и BE пе­ре­се­ка­ют­ся в точке O.

а)  До­ка­жи­те, что CO  =  KO.

б)  Найти от­но­ше­ние ос­но­ва­ний тра­пе­ции BC и AD, если пло­щадь тре­уголь­ни­ка BCK со­став­ля­ет пло­ща­ди тра­пе­ции ABCD.

18.  

i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний имеет ровно два ре­ше­ния.

19.  

i

За­ду­ма­но не­сколь­ко (не обя­за­тель­но раз­лич­ных) на­ту­раль­ных чисел. Эти числа и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке не­убы­ва­ния. Если какое-то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, сти­ра­ют­ся. На­при­мер, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а)  При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 2, 4, 6, 8, 10.

б)  Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?

в)  При­ве­ди­те все при­ме­ры за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!