Пояснительная записка
Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования по математике:
Федерального Государственного Образовательного Стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2014 года №1897);
Норм Федерального Закона «Об образовании в Российской Федерации» «273-ФЗ от 29 декабря 2012 года;
Основной Образовательной программы основного общего образования МБОУ Безводнинская СШ
Примерной программы по курсу геометрии (7 – 9 классы), созданной на основе единой концепции преподавания математики в средней школе, разработанной А.Г.Мерзляком, В.Б.Полонским, М.С.Якиром, Д.А. Номировским, включенных в систему «Алгоримт успеха» (М.: Вентана-Граф, 2018) и обеспечена УМК для 7-9-го классов «Геометрия – 7», «Геометрия – 8» и «Геометрия – 9»/ А.Г.Мерзляк, В.Б.Полонский, М.С.Якир/М.: Вентана-Граф, 2018.
В данных документах учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
В основу настоящей программы положено Фундаментальное ядро содержания общего образования, требования к результатам освоения образовательной программы основного общего образования, представленные в федеральном государственном образовательном стандарте основного общего образования. В ней также учитываются домирующие идеи положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуютформированию ключевой компетентности – умения учиться.
В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
Практическая значимость школьного курса геометрии 7 – 9 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.
Геометрия является одним из опорных школьных предметов. Геометрические знания и умения необходимы для изучения других школьных дисциплин (физика, география, химия, информатика и т.д.).
Одной из основных целей изучения геометрии является развитие мышления. В процессе изучения геометрии формируются логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным факторомявляется
формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.
Обучение геометрии даёт возможностьшкольникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.
В процессе изучения геометрии школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.
Знакомство с историей развития геометрии как науки формирует у учащихся представление о геометрии как о части общечеловеческой культуры.
Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, доказательство, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:
1) в направлении личностного развития:
Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
2) в метапредметном направлении:
Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
3) в предметном направлении:
Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.
Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.
В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.
Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.
Общая характеристика учебного предмета «Геометрия»
Содержание курса геометрии в 7-9 классах представлено в виде следующих содержательных разделов: «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Геометрия в историческом развитии».
Содержание раздела «Геометрические фигуры» служит базой для дальнейшего изучения учащимися геометрии. Изучение материала способствует формированию у учащихся знаний о геометрической фигуре как важнейшей математической модели для описания реального мира.
Главная цель данного раздела — развить у учащихся воображение и логическое мышление путём систематического изучения свойств геометрических фигур и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности с формально-логическим подходом является неотъемлемой частью геометрических знаний.
Содержание раздела «Измерение геометрических величин» расширяет и углубляет представления учащихся об измерениях длин, углов и площадей фигур, способствует формированию практических навыков, необходимых как при решении геометрических задач, так и в повседневной жизни.
Содержание разделов «Координаты», «Векторы» расширяет и углубляет представления учащихся о методе координат, развивает умение применять алгебраический аппарат при решении геометрических задач, а также задач смежных дисциплин.
Раздел «Геометрия в историческом развитии», содержание которого фрагментарно внедрено в изложение нового материала как сведения об авторах изучаемых фактов и теорем, истории их открытия, предназначен для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.
III. Описание места учебного предмета «Геометрия» в учебном плане:
Базисный учебный (образовательный) план на изучение геометрии в 7 – 9 классах основной школы отводит 2 учебных часа в неделю, 68 часов в год, всего 204 часа.
Курс | Количество часов в неделю | Количество часов в год |
Геометрия 7 класс | 2 | 70 |
Геометрия 8 класс | 2 | 70 |
Геометрия 9 класс | 2 | 70 |
Итого | 210 |
Личностные, метапредметные и предметные результаты освоения учебного предмета «Геометрия»
Изучение геометрии по данной программе способствует формированию у учащися личностных ,метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.
Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета.
Личностные результаты:
воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
умение контролировать процесс и результат учебной и математической деятельности;
критичность мышления, инициатива, находчивость, активность при решении геометрических задач.
Средством достижения этих результатов является:
система заданий учебников;
представленная в учебниках в явном виде организация материала по принципу минимакса;
использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.
Метапредметныерезультаты:
умение самостоятельно определять цели своего обучения, ставить и формулировать для себя нолвые задания в учёбе, развивать мотивы и интересы своей познавательной деятельности;
умение соотносить свои действия с планируемыми результатами, осуществлять контрольсвоей деятельности в процессе достижения результата, опеределятьспособы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
устанавливать причинно-следственные связи, проводить доказательное рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) делать выводы;
умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;
компетентностьв области использования информационно-коммуникационных технологий;
первоначальные предстваления об идеях и о методах геометрии как об универсальном языке науки и техники, о средствах моделирования явлений и процессов;
умение видеть геометрическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информации, необходимую для решения математических проблем, и предствалять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятной информации;
умение понимать и использовать математические средства наглядности (чертежи, таблицы, схемы и др.)дляиллюстрации, интерпритации, аргументации;
умение выдвигать гипотезы при решении задачи и понимать необходимость их проверки;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Предметные результаты:
осознание значения геометрии для повседневной жизни человека;
представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
развитие умений работать с учебником математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической технологии и символики, проводить классификации, логические обоснования;
владение базовым понятийным аппаратом по основным разделам содержания;
систематические знания о фигурах и их свойствах;
практически значимые геометрические умения и навыки, умение применять их к решению геометрических и негеометрических задач, а именно:
изображать фигуры на плоскости;
использовать геометрический язык для описания предметов окружающего мира;
измерять длины отрезков, величины углов, вычислять площади фигур;
распознавать и изображать равные, симметричные и подобные фигуры;
выполнять построения геометрических фигур с помощью циркуля и линейки;
читать и использовать информацию, представленную на чертежах, схемах;
проводить практические расчеты.
Содержание учебного предмета «Геометрия» 7 класс
1. Простейшие геометрические фигуры и их свойства
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Основная цель — систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.
В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики 1—6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного
понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.
Контрольных работ: 1
2. Треугольники
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Основная цель — ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.
Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.
Контрольных работ: 1
3. Параллельные прямые. Сумма углов треугольника
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Основная цель — ввести одно из важнейших понятий — понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.
Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.
Контрольных работ: 1
4. Окружность и круг. Геометрические построения.
Сумма углов треугольника. Соотношение между сторонамии углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Основная цель — рассмотреть новые интересные и важные свойства треугольников.
В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.
Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.
При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.
Контрольных работ: 1
5. Обобщение и систематизация знаний учащихся
Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе.
Контрольных работ: 1
Планируемые результаты обучения геометрии в 7 классе
Геометрические фигуры
Выпускник научится:
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• классифицировать геометрические фигуры;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, симметрии);
• доказывать теоремы;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
Выпускник получит возможность:
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом равных треугольников, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек
Измерение геометрических величин
Выпускник научится:
• использовать свойства измерения длин, и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Тематическое планирование по геометрии в 7 классе
№ урока
Содержание
(разделы, темы)
Кол-во
часов
Основные виды учебной деятельности (УУД)
-
Точки и прямые
1
Приводить примеры геометрических фигур.Описывать точку, прямую, отрезок, луч, угол.
Формулировать:
определения: равных отрезков, середины отрезка, расстояния между двумя точками, дополнительных лучей, развёрнутого угла, равных углов, биссектрисы угла, смежных и вертикальных углов, пересекающихся прямых, перпендикулярных прямых, перпендикуляра, наклонной, расстояния от точки до прямой;
свойства: расположения точек на прямой, измерения отрезков и углов, смежных и вертикальных углов, перпендикулярных прямых; основное свойство прямой.
Классифицировать углы.
Доказывать: теоремы о пересекающихся прямых, о свойствах смежных и вертикальныхуглов, о единственности прямой, перпендикулярной данной (случай, когда точка лежит на данной прямой).
Находить длину отрезка, градусную меру угла, используя свойства их измерений.
Изображать с помощью чертёжных инструментов геометрические фигуры: отрезок, луч, угол, смежные и вертикальные углы, перпендикулярные прямые, отрезки и лучи.
Пояснять, что такое аксиома, определение.
Решать задачи на вычисление и доказательство, проводя необходимые доказательные рассуждения
-
Точки и прямые
1
-
Отрезок и его длина
1
-
Отрезок и его длина
1
-
Отрезок и его длина
1
-
Луч. Угол.Измерение углов
1
-
Луч. Угол.Измерение углов
1
-
Луч. Угол.Измерение углов
1
-
Смежные и вертикальные углы
1
-
Смежные и вертикальные углы
1
-
Смежные и вертикальные углы
1
-
Перпендикулярные прямые
1
-
Аксиомы
1
-
Повторение и систематизация учебного материала.
1
-
Контрольная работа № 1 по теме «Простейшие геометрические фигуры и их свойства »
1
-
Равные треугольники. Высота, медиана, биссектриса треугольника
1
Описывать смысл понятия «равные фигуры». Приводить примеры равных фигур.
Изображать и находить на рисунках равносторонние, равнобедренные, прямоугольные, остроугольные, тупоугольные треугольники и их элементы.
Классифицировать треугольники по сторонам и углам.
Формулировать:
определения: остроугольного, тупоугольного, прямоугольного, равнобедренного, равностороннего, разностороннего треугольников; биссектрисы, высоты, медианы треугольника; равных треугольников; серединного перпендикуляра отрезка; периметра треугольника;
свойства: равнобедренного треугольника, серединного перпендикуляра отрезка, основного свойства равенства треугольников;
признаки: равенства треугольников, равнобедренного треугольника.
Доказывать теоремы: о единственности прямой, перпендикулярной данной (случай, когда точка лежит вне данной прямой); три признака равенства треугольников; признаки равнобедренного треугольника; теоремы о свойствах серединного перпендикуляра, равнобедренного и равностороннего треугольников.
Разъяснять, что такое теорема, описывать структуру теоремы. Объяснять, какую теорему называют обратной данной, в чём заключается метод доказательства от противного. Приводить примеры использования этого метода.
Решать задачи на вычисление и доказательство.
-
Равные треугольники. Высота, медиана, биссектриса треугольника
1
-
Первый и второй признаки равенства треугольников
1
-
Первый и второй признаки равенства треугольников
1
-
Первый и второй признаки равенства треугольников
1
-
Первый и второй признаки равенства треугольников
1
-
Первый и второй признаки равенства треугольников
1
-
Равнобедренный треугольник и его свойства
1
-
Равнобедренный треугольник и его свойства
1
-
Равнобедренный треугольник и его свойства
1
-
Равнобедренный треугольник и его свойства
1
-
Признаки равнобедренного треугольника
1
-
Признаки равнобедренного треугольника
1
-
Третий признак равенстватреугольников
1
-
Третий признак равенстватреугольников
1
-
Теоремы
1
-
Повторение и систематизация учебного материала.
1
-
Контрольная работа № 2 по теме: «Треугольники»
1
Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности.
-
Параллельные прямые
1
Распознавать на чертежах параллельные прямые. Изображать с помощью линейки и угольника параллельные прямые.
Описывать углы, образованные при пересечении двух прямых секущей. Формулировать определения: параллельных прямых, расстояния между параллельными прямыми, внешнего угла треугольника, гипотенузы и катета;
свойства: параллельных прямых; углов, образованныхпри пересечении параллельных прямых секущей; суммы углов треугольника; внешнего угла треугольника; соотношений между сторонами и углами треугольника; прямоугольного треугольника; основное свойство папаллельных прямых;
признаки: параллельных прямых, равенства прямоугольных треугольников.
Доказывать: теоремы о свойствах параллельных прямых, о сумме углов треугольника, неравенство треугольника, теоремы о сравнении сторон и углов треугольника, теоремы о свойствах прямоугольного треугольника, признаки параллельных прямых, равенства прямоугольных треугольников.
Решать задачи на вычисление и доказательство.
-
Признаки параллельности прямых
1
-
Признаки параллельности прямых
1
-
Свойства параллельных прямых
1
-
Свойства параллельных прямых
1
-
Свойства параллельных прямых
1
-
Сумма углов треугольника
1
-
Сумма углов треугольника
1
-
Сумма углов треугольника
1
-
Сумма углов треугольника
1
-
Прямоугольный треугольник
1
-
Прямоугольный треугольник
1
-
Свойства прямоугольного треугольника
1
-
Свойства прямоугольного треугольника
1
-
Повторение и систематизация учебного материала.
1
Обобщить приобретенные знания, навыки и умения по теме «Параллельные прямые. Сумма углов треугольника».
-
Контрольная работа № 3 по теме «Параллельные прямые. Сумма углов треугольника»
1
Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности.
-
Геометрическое место точек. Окружность и круг.
1
Пояснять, что такое задача на построение; геометрическое место точек (ГМТ). Приводить примеры ГМТ.
Изображать на рисунках окружность и её элементы;касательную к окружности; окружность, вписанную в треугольник, и окружность, описанную около него. Описывать взаимное расположение окружности и прямой. ;
Формулировать определения: окружности, круга, их элементов; касательной к окружности; окружности, описанной около треугольника, окружности, вписанной в треугольник;
свойства: серединного перпендикуляра как ГМТ; биссектрисы угла как ГМТ; касательной к окружности; диаметра и хорды; точки пересечения серединных перпендикуляров сторон треугольника;точки пересечения биссектрис углов треугольника;
признаки касательной.
Доказывать: теоремы о серединном перпендикуляре и биссектрисе угла как ГМТ; о свойствах касательной; об окружности, вписанной в треугольник, описанной около треугольника; признаки касательной..
Решать основные задачи на построение: построение угла, равного данному; построение серединного перпендикуляра данного отрезка; построение прямой, проходящей через данную точку и перпендикулярной данной прямой; построение биссектрисы данного угла; построениетреугольника по двум сторонам и углу между ними; по стороне и двум прилежащим к ней углам. Решать задачи на построение методом ГМТ.
Строить треугольник по трем сторонам.
Решать задачи на вычисление, доказательство и построение.
-
Геометрическое место точек. Окружность и круг.
1
-
Некоторые свойства окружности. Касательная к окружности.
1
-
Некоторые свойства окружности. Касательная к окружности.
1
-
Некоторые свойства окружности. Касательная к окружности.
1
-
Описанная и вписанная окружности треугольнника
1
-
Описанная и вписанная окружности треугольнника
1
-
Описанная и вписанная окружности треугольнника
1
-
Задачи на построение
1
-
Задачи на построение
1
-
Задачи на построение
1
-
Метод геометрических мест точек в задачах на построение
1
-
Метод геометрических мест точек в задачах на построение
1
-
Метод геометрических мест точек в задачах на построение
1
-
Повторение и систематизация учебного материала.
1
Обобщить приобретенные знания, навыки и умения по теме «Системы линейных уравнений с двумя переменными».
-
Контрольная работа № 4 по теме «Окружность и круг. Геометрические построения»
1
Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности.
-
Обобщение и систематизация знаний учащихся
1
Обобщить приобретенные знания, навыки и умения за 7 класс. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности.
-
Обобщение и систематизация знаний учащихся
1
-
Итоговая контрольная работа №5
1
-
Повторение и систематизация курса 7 класса
1
-
Повторение и систематизация курса 7 класса
1