СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Задания по трапеции и ромбу

Категория: Геометрия

Нажмите, чтобы узнать подробности

Задания по геометрии на трапецию и ромб, которые есть в ОГЭ.

Просмотр содержимого документа
«Задания по трапеции и ромбу»

Ромб

1. 

Сто­ро­на ромба равна 34, а ост­рый угол равен 60° . Вы­со­та ромба, опу­щен­ная из вер­ши­ны ту­по­го угла, делит сто­ро­ну на два от­рез­ка. Ка­ко­вы длины этих от­рез­ков?

 

Перечислите эти длины в от­ве­те без пробелов в по­ряд­ке возрастания.

2.

Пло­щадь ромба равна 27, а пе­ри­метр равен 36. Най­ди­те вы­со­ту ромба.

3. 

Рас­сто­я­ние от точки пе­ре­се­че­ния диа­го­на­лей ромба до одной из его сто­рон равно 19, а одна из диа­го­на­лей ромба равна 76. Най­ди­те углы ромба.

В от­ве­те за­пи­ши­те ве­ли­чи­ны раз­лич­ных углов в по­ряд­ке воз­рас­та­ния без пробелов.

4.

Точка O — центр окружности, на ко­то­рой лежат точки P, Q и R таким образом, что OPQR — ромб. Най­ди­те угол ORQ. Ответ дайте в градусах.

5. 

Точка O — центр окружности, на ко­то­рой лежат точки S, T и V таким образом, что OSTV — ромб. Най­ди­те угол STV. Ответ дайте в градусах.

6. 

Высота BH ромба ABCD делит его сторону AD на отрезки AH = 44 и HD = 11. Найдите площадь ромба.

Трапеция

1. 

Найдите боль­ший угол рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль AC об­ра­зу­ет с ос­но­ва­ни­ем AD и бо­ко­вой сто­ро­ной AB углы, рав­ные 30° и 45° соответственно.


2. 

Найдите угол АDС рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной АВ углы, рав­ные 30° и 50° соответственно.


3. 

Сумма двух углов рав­но­бед­рен­ной тра­пе­ции равна 140°. Най­ди­те боль­ший угол трапеции. Ответ дайте в градусах.


6. 

Основания тра­пе­ции равны 4 см и 10 см. Диа­го­наль трапеции делит сред­нюю линию на два отрезка. Най­ди­те длину боль­ше­го из них.


7. 

Найдите угол  ABC  рав­но­бед­рен­ной тра­пе­ции  ABCD, если диа­го­наль  AC  об­ра­зу­ет с ос­но­ва­ни­ем  AD и бо­ко­вой сто­ро­ной  CD  углы, рав­ные 30° и 80° соответственно.

9. 

Тан­генс остро­го угла пря­мо­уголь­ной тра­пе­ции равен   Най­ди­те её боль­шее основание, если мень­шее ос­но­ва­ние равно вы­со­те и равно 15.

10. 

Най­ди­те угол АDС рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной АВ углы, рав­ные 30° и 40° со­от­вет­ствен­но.



12. 

Най­ди­те мень­ший угол рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной CD углы, рав­ные 30° и 105° со­от­вет­ствен­но.






14. 

В рав­но­бед­рен­ной тра­пе­ции из­вест­ны вы­со­та, мень­шее ос­но­ва­ние и угол при ос­но­ва­нии. Най­ди­те боль­шее ос­но­ва­ние.

16. 

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 50 и 104, бо­ко­вая сто­ро­на 45. Най­ди­те длину диа­го­на­ли тра­пе­ции.

20. 

В тра­пе­ции ABCD AB = CD, ∠BDA = 49° и ∠BDC = 13°. Най­ди­те угол ABD. Ответ дайте в градусах.


21. 

Высота рав­но­бед­рен­ной трапеции, проведённая из вер­ши­ны C, делит ос­но­ва­ние AD на от­рез­ки дли­ной 1 и 5. Най­ди­те длину ос­но­ва­ния BC.