СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по математике для 5-9 классов по ФГОС

Категория: Математика

Нажмите, чтобы узнать подробности

Рабочая программа по математике для 5*9 классов по ФГОС (без КТП") для любого УМК (основной костяк)

Просмотр содержимого документа
«Рабочая программа по математике для 5-9 классов по ФГОС»

СОДЕРЖАНИЕ

I .Планируемы результаты изучения курса математики в 5-9 классах 2

II. Содержание учебного предмета 5

III . Планируемые результаты изучения курса математики в основной школе 9

IV.Тематический план 14

V. Тематическое планирование с определением основных видов учебной деятельности 14





i .ПланируемыЕ результаты изучения курса математики в 5-9 классах

Предметные:

1.Формирование представлений о математике как о методе познания действительности.

2.Расширить представления о единицах измерения длины, освоить шкалу перевода одних единиц в другие; дать представление о метрической системе единиц.

3.Расширить представления о геометрических фигурах в окружающем нас мире, научиться классифицировать многоугольники.

4.Развивать чертежные навыки, приемы анализа данных.

5. Развивать пространственные представления учащихся.

6. Использовать математическую терминологию для описания простейших геометрических объектов.

7. Обобщить изученный материал по теме…

8.Научиться воспроизводить приобретенные знания, навыки в конкретной деятельности.

9.Расширить представления о практическом применении математики.

10.Научиться применять приобретенные знания, умения, навыки в конкретной деятельности.

11.Развивать умение извлекать необходимую информацию из математических текстов для….

12.Развивать умение анализировать математические тексты и грамотно обосновывать свою точку зрения для …(составления выражения, решения задачи, выполнения проекта…)

13. Научиться проводить диагностику учебных достижений.

14.Проанализировать допущенные в контрольной работе ошибки, проводить работу по их предупреждению.

15.Систематизировать знания, умения учащихся по теме … и применять полученные знания в новых условиях.

16.Научиться применять приобретенные знания, умения, навыки для решения практических задач.


Метапредметные:


Коммуникативные:

1.Развивать у учащихся представление о месте математики в системе наук.

2.Поддерживать инициативное сотрудничество в поиске и сборе информации.

3.Формировать навыки учебного сотрудничества в ходе индивидуальной и групповой работы.

4.Организовывать и планировать учебное сотрудничество с учителем и сверстниками.

5. Развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии.

6. Воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для решения.

7. Обмениваться знаниями между одноклассниками для принятия эффективных совместных решений.

8.Способствовать формирование научного мировоззрения учащихся.

9.Определять цели и функции участников, способы взаимодействия; планировать общие способы работы; обмениваться знаниями между членами группы для принятия эффективных совместных решений.

10.Управлять своим поведением (контроль, самокоррекция, оценка своего результата).

11.Развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии.

12.Уметь с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации

Регулятивные:

1.Осознавать самого себя, как движущую силу своего научения, способность к мобилизации сил и энергии, к волевому усилию – выбору в ситуации мотивационного конфликта, к преодолению препятствий.

2.Определять новый уровень отношения к самому себе как субъекту деятельности.

3.Оценивать уровень владения учебным действием (отвечать на вопрос «что я не знаю и не умею»).

4.Определять последовательность промежуточных целей с учетом конечного результата; составлять план последовательности действий.

5. Формировать постановку учебной задачи на основе соотнесения того, что уже известно и усвоено учащимися, и того, что еще неизвестно.

6.Определять целевые установки учебной деятельности, выстраивать последовательности необходимых операций (алгоритм действий).

7.Самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности.

8.Вносить необходимые дополнения и коррективы в план и способ действия в случае расхождения эталона, реального действия и его продукта.

9. Прогнозировать результат и уровень усвоения.

10.Корректировать деятельность: вносить изменения в процесс с учетом возникших трудностей и ошибок, намечать способы их устранения.

11.Проектировать траектории развития через включение в новые виды деятельности и формы сотрудничества.

12.Проектировать маршрут преодоления затруднений в обучении через включение в новые виды сотрудничества

Познавательные:

1.Сравнивать различные объекты: выделять из множества один или несколько объектов, имеющих общие свойства.

2.Выделять общее и частное, целое и часть, общее и различное в изучаемых объектах; классифицировать объекты.

3.Выполнять учебные задачи, не имеющие однозначного решения; ориентироваться на разнообразие способов решения задач

4.Приводить примеры в качестве доказательства выдвигаемых положений.

5.Использовать знаково-символические средства, в том числе модели и схемы для решения учебных задач.

6.Владеть общим приемом решения учебных задач.

7.Создавать и преобразовывать модели и схемы для решения задач.

8.Осуществлять поиск необходимой информации для выполнения учебных заданий.

9.Уметь осуществлять выбор наиболее эффективных способов решения образовательных задач в зависимости от конкретных условий.

10.Уметь выделять существенную информацию из текстов.

11. Уметь устанавливать причинно-следственные связи.


Личностные:

1.Формирование стартовой мотивации к изучению нового.

2.Формирование устойчивой мотивации к обучению.

3.Формирование навыков составления алгоритма выполнения задачи.

4.Формирование устойчивой мотивации к изучению и закреплению нового.

5.Формирование познавательного интереса к изучению нового, способам обобщения и систематизации знаний.

6.Формирование мотивации к аналитической деятельности (к анализу).

7.Формирование навыков составления алгоритма выполнения задания, навыков организации своей деятельности в составе группы.

8.Формирование устойчивого интереса к обучению.

9.Формирование интереса к познавательной деятельности.

10.Формирование навыков самоанализа и самоконтроля.

11.Формирование мотивации к самостоятельной и коллективной исследовательской деятельности.

12.Формирование навыков работы по алгоритму.

13.Формирование навыка осознанного выбора наиболее эффективного способа решения.

14. Формирование навыков абстрактного мышления.

15.Формирование способности к волевому усилию в преодолении препятствий.

16.Формирование целевых установок учебной деятельности.

17. Формирование навыкам анализа, сопоставления, сравнения.

18.Формирование мотивации к конструированию, творческому самовыражению.

19.Формирование целостного восприятия окружающего мира.

20.Формирование заинтересованности в приобретении и расширении знаний


II. Содержание учебного предмета

АРИФМЕТИКА

Натуральные числа. Натуральный ряд. Десятичная сис­тема счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. По­рядок действий в числовых выражениях, использование ско­бок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Ариф­метические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновен­ной в виде десятичной.

Проценты; нахождение процентов от величины и величи­ны по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел.

Множество рациональных чисел; рациональное число как отношение , где m — целое число, n - натуральное число. Сравнение рацио­нальных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с це­лым показателем.

Действительные числа. Квадратный корень из числа. Ко­рень третьей степени.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действи­тельных чисел в виде бесконечных десятичных дробей. Срав­нение действительных чисел.

Координатная прямая. Изображение чисел точками коор­динатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение мно­жителя — степени 10 — в записи числа.

Приближенное значение величины, точность приближе­ния. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

АЛГЕБРА

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одно­члены и многочлены. Степень многочлена. Сложение, вычи­тание, умножение многочленов. Формулы сокращенного умно­жения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разло­жение квадратного трехчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраи­ческих дробей. Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказа­тельство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выра­жений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень урав­нения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула кор­ней квадратного уравнения. Теорема Виета. Решение урав­нений, сводящихся к линейным и квадратным. Примеры ре­шения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с дву­мя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя перемен­ными; решение подстановкой и сложением. Примеры реше­ния систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интер­претация уравнения с двумя переменными. График линейно­го уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простей­ших нелинейных уравнений: парабола, гипербола, окруж­ность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность нера­венств. Линейные неравенства с одной переменной. Квадрат­ные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ

Основные понятия. Зависимости между величинами. Представление зависимостей формулами. Понятие функции.

Область определения и множество значений функции. Спосо­бы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадра­тичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства.

Графики функций, у =, у = |х|.

Числовые последовательности. Понятие числовой по­следовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметиче­ской и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Ста­тистические характеристики набора данных: среднее арифме­тическое, медиана, наибольшее и наименьшее значения, раз­мах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о слу­чайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и не­возможные события. Равновозможность событий. Классиче­ское определение вероятности.

Комбинаторика. Решение комбинаторных задач перебо­ром вариантов. Комбинаторное правило умножения. Переста­новки и факториал.

ГЕОМЕТРИЯ

Наглядная геометрия. Наглядные представления о фигу­рах на плоскости: прямая, отрезок, луч, угол, ломаная, мно­гоугольник, окружность, круг. Четырехугольник, прямоуголь­ник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаим­ное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Еди­ницы измерения длины. Измерение длины отрезка, построе­ние отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновели­кие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры се­чений. Многогранники. Правильные многогранники. Приме­ры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зе­ркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикуляр­ные прямые. Теоремы о параллельности и перпендикулярно­сти прямых. Перпендикуляр и наклонная к прямой. Середин­ный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольни­ки; свойства и признаки равнобедренного треугольника. Приз­наки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сум­ма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треуголь­ников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных тре­угольников. Основное тригонометрическое тождество. Форму­лы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и те­орема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и призна­ки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписанный угол; величина вписанного угла. Взаим­ное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в тре­угольник, и окружность, описанная около треугольника. Впи­санные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Решение задач на вычисление, доказательство и построе­ние с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллель­ными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной цен­трального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоско­сти. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

ЛОГИКА И МНОЖЕСТВА

Теоретико-множественные понятия. Множество, эле­мент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Определение. Аксиомы и теоремы. До­казательство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление ло­гических связок если ..., то в том и только в том слу­чае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

(Содержание раздела вводится по мере изучения других вопросов.)

История формирования понятия числа: натуральные чи­сла, дроби, недостаточность рациональных чисел для геомет­рических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. От­крытие десятичных дробей. Старинные системы мер. Десятич­ные дроби и метрическая система мер. Появление отрицатель­ных чисел и нуля. J1.Магницкий. JT. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Де­карт. История вопроса о нахождении формул корней алгебраи­ческих уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Фер­ма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные иг­ры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение с помощью циркуля и линейки. Пост­роение правильных многоугольников. Трисекция угла. Квад­ратура круга. Удвоение куба. История числа я. Золотое сече­ние. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. Софизмы, парадоксы.



III . Планируемые результаты изучения курса математики в основной школе

Темы

Обучающийся (выпускник) научится

Обучающийся (выпускник) получит возможность научиться

Раздел Арифметика

Натуральные числа. Дроби. Рациональные числа


понимать особенности десятичной системы счисления;

оперировать понятиями, связанными с делимостью натуральных чисел;

выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

сравнивать и упорядочивать рациональные числа;

выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

познакомиться с позиционными системами счисления с основаниями, отличными от 10;

углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа


использовать начальные представления о множестве действительных чисел;

оперировать понятием квадратного корня, применять его в вычислениях.

развить представление о числе и числовых системах от натуральных до действительных чисел;

о роли вычислений в практике;

развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки


использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Раздел Алгебра

Алгебраические выражения


оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные;

работать с формулами;

выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

выполнять разложение многочленов на множители.

выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения


решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

овладеть специальными приёмами решения уравнений и систем уравнений;

уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства


понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

решать линейные неравенства с одной переменной и их системы;

решать квадратные неравенства с опорой на графические представления;

применять аппарат неравенств для решения задач из различных разделов курса.

разнообразным приёмам доказательства неравенств;

уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Раздел Функции

Основные понятия. Числовые функции


понимать и использовать функциональные понятия и язык (термины, символические обозначения);

строить графики элементарных функций;

исследовать свойства числовых функций на основе изучения поведения их графиков;

понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;

на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности


понимать и использовать язык последовательностей (термины, символические обозначения);

применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

понимать арифметическую и геометрическую прогрессию как функции натурального аргумента;

связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Раздел Комбинаторика. Статистика и теория вероятностей.

Описательная статистика


Выпускник научится использовать простейшие способы представления и анализа статистических данных.


Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.


приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика


решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Научиться некоторым специальным приёмам решения комбинаторных задач.

Раздел Логика и множества

Множества

приводить примеры конечных и бесконеч­ных мно­жеств, нахо­дить объединение и пересе­че­ние множеств, приводить при­меры несложных классифика­ций, использовать теоретико-множе­ственную символику и язык при решении задач в ходе изучения различных разделов курса.


иллюстрировать математиче­ские понятия и утверж­дения при­мерами, теоретико-множественные понятия с помощью кругов Эйлера, использовать при­меры и контрпри­меры в аргумен­тации,конструировать математиче­ские предложе­ния с по­мощью связок если то, в том и только том слу­чае, логиче­ских связок и, или

Раздел. Геометрия

Наглядная геометрия


распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

строить развёртки куба и прямоугольного параллелепипеда;

определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

вычислять объём прямоугольного параллелепипеда.

научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

углубить и развить представления о пространственных геометрических фигурах;

научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры


пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

решать простейшие планиметрические задачи в пространстве.

овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

научиться решать задачи на построение методом геометрического места точек и методом подобия;

приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

вычислять длину окружности, длину дуги окружности;

вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников

Координаты


вычислять длину отрезка по координатам его концов;

вычислять координаты середины отрезка;

использовать координатный метод для изучения свойств прямых и окружностей.

овладеть координатным методом решения задач на вычисления и доказательства;

приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы


оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

овладеть векторным методом для решения задач на вычисления и доказательства;

приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».





IV.Тематический план

Раздел

ИТОГО

ИТОГО

5 класс

6 класс

7 класс

8 класс

9 класс


Арифметика

120

120




240

Алгебра



87

86

86

259

Функции



10



10

Вероятность и статистика

9


4

5

13

31

Геометрия

39

33

68

68

66

274

Логика и множества


8




8

Математика в историческом развитии

2

1

1

1


5

ИТОГО

170+5 резерв

170+5 резерв

170+5 резерв

170+5 резерв

165+ 5 резерв

845+25резерв



V. Тематическое планирование с определением основных видов учебной деятельности

Название темы

Основные элементы содержания

Характеристика основных видов деятельности

Раздел. Арифметика

Натуральные числа 

Натуральный ряд. Десятичная система счисления. [Позиционные системы счисления.] Арифметические действия с натуральными числами. Свойства арифметических действий. 
Понятие о степени с натуральным показателем. Квадрат и куб числа.
Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. 
Решение текстовых задач арифметическими способами.
Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. [Другие признаки делимости.] Простые и составные числа. Разложение натурального числа на простые множители. [Алгоритмы нохождения НОК и НОД.] Деление с остатком. [Разбиение множества натуральных чисел на классы по остаткам от деления.]

Описывать свойства натурального ряда. 
Читать и записывать натуральные числа, сравнивать и упорядочивать их. 
Выполнять вычисления с натуральными числами; вычислять значения степеней.
Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. 
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
Формулировать определения делителя и кратного, простого и составного числа, свойства и признаки делимости. [Решать задачи, связанные с делимостью.]
Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т.п.). 
Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера).

Дроби

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. 
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Отношение. Пропорция; основное свойство пропорции.
Проценты; нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах. 
Решение текстовых задач арифметическими способами.

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.
Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.
Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями. 
Записывать и читать десятичные дроби. Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей.
Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.
Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.
Выполнять прикидку и оценку в ходе вычислений.
Объяснять, что такое процент. Представлять проценты в дробях и дроби в процентах. 
Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений в практике.
Решать задачи на проценты и дроби (в том числе задачи из реальной практики, используя при необходимости калькулятор); использовать понятия отношения и пропорции при решении задач.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора и компьютера).

Рациональные числа

Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа. 
Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий.

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш-проигрыш, выше-ниже уровня моря и т.п.). 
Изображать точками координатной прямой положительные и отрицательные рациональные числа.
Характеризовать множество целых чисел, множество рациональных чисел.
Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений. 
Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами.

Действительные числа

Расширение множества натуральных чисел до множества целых, множества целых чисел до множе­ства рациональ­ных. Рациональное число как отношение т/п, где т — целое число, а п — нату­ральное чи­сло.

Степень с целым показателем. Квадрат­ный корень из числа. Корень третьей сте­пени.

Понятие об иррациональном числе. Ирра­цио­нальность числа и несоизме­римость сто­роны и диагонали квадрата. Десятичные при­ближения ирра­циональных чисел.

Множество действительных чисел; пред­ставле­ние действительных чисел в виде беско­нечных десятич­ных дробей. Сравнение действи­тельных чисел.

Взаимно однозначное соответствие ме­жду дей­ствительными числами и точ­ками координат­ной прямой. Числовые проме­жутки: интервал, отрезок, луч

Описывать множество целых чисел, множе­ство ра­циональ­ных чисел, соотношение ме­жду этими множе­ст­вами.

Сравнивать и упорядочивать рациональ­ные числа, выпол­нять вычисления с рациональ­ными числами, вы­чис­лять значе­ния степеней с целым показателем.

Формулировать определение квадратного корня из числа. Ис­пользовать график функ­ции у = х2 для нахож­дения квад­ратных кор­ней. Вычислять точные и прибли­женные значения корней, используя при необходимо­сти калькуля­тор; проводить оценку квадрат­ных корней.

Формулировать определение корня третьей степени; нахо­дить значения кубических кор­ней, при необходимо­сти используя, калькуля­тор.

Приводить примеры иррацио­нальных чисел; распо­зна­вать рациональные и иррациональ­ные числа; изобра­жать числа точками коорди­натной прямой.

Находить десятичные приближе­ния рацио­нальных и иррацио­нальных чисел; сравни­вать и упорядочивать действи­тельные числа.

Описывать множество действи­тельных чи­сел.

Использовать в письменной ма­тематиче­ской речи обозначе­ния и графические изобра­жения чи­словых мно­жеств, теоретико-мно­жественную символику

Измерения приближения. оценки

Приближенное значение величины, точ­ность приближения. Размеры объек­тов окружаю­щего мира (от элементар­ных частиц до Вселенной), длительность процессов в окру­жающем мире..

Прикидка и оценка результатов вычисле­ний.

Способы записи значений величин, в том числе с выделе­нием множите­ля — сте­пени 10 в записи числа

Находить, анализировать, со­поставлять числовые характе­ри­стики объектов окру­жаю­щего мира.

Использовать запись чисел в стандартном виде для выраже­ния размеров объектов, длитель­ности процессов в окру­жающем мире.

Сравнивать числа и величины, записанные с исполь­зова­нием степени 10.

Использовать разные формы записи прибли­женных значе­ний; делать выводы о точности приближения по за­писи прибли­женного значе­ния.

Выполнять вычисления с реаль­ными дан­ными.

Выполнять прикидку и оценку результатов вычислений


Раздел. Алгебра

Введение в алгебру

Буквенные выражения (выражения с пе­ремен­ны­ми). Числовое значение буквен­ного выражения. До­пустимые зна­чения перемен­ных. Подстановка выра­же­ний вместо перемен­ных.

Преобразование буквенных выраже­ний на ос­нове свойств арифметических действий. Равен­ство буквен­ных выраже­ний. Тождество

Выполнять элементарные зна­ково-символиче­ские дейст­вия: применять буквы для обозначе­ния чисел, для записи общих ут­верждений; состав­лять буквенные выра­же­ния по условиям, заданным словесно, рисун­ком или чертежом; преоб­разовывать алгебраи­че­ские суммы и произведения (вы­полнять приведение подоб­ных слагае­мых, раскрытие ско­бок, упрощение произведе­ний).

Вычислять числовое значение буквенного выраже­ния; нахо­дить область допустимых значе­ний перемен­ных в выраже­нии

Многочлены

Степень с натуральным показателем и ее свой­ства. Одночлены и много­члены. Степень многочлена. Сло­жение, вычитание, умноже­ние многочленов. Фор­мулы сокращенного умноже­ния: квад­рат суммы и квадрат разно­сти. Формула разности квадратов. Преобра­зова­ние целого выражения в мно­го­член. Разло­жение мно­гочлена на множители: вынесе­ние общего множи­теля за скобки, группи­ровка, примене­ние формул сокра­щен­ного умножения.

Многочлены с одной переменной. Ко­рень мно­гочлена. Квадратный трех­член, разложе­ние квадратно­го трех­члена на множители



Формулировать, записывать в символиче­ской фор­ме и обос­новывать свойства сте­пени с натуральным по­казате­лем; при­ме­нять свойства степени для преобразо­вания выраже­ний и вычислений.

Выполнять действия с много­членами.

Выводить формулы сокращен­ного умноже­ния, при­менять их в преобразованиях выраже­ний и вычислениях.

Выполнять разложение много­членов на мно­жители.

Распознавать квадратный трех­член, выяс­нять возмож­ность разложения на множи­тели, представлять квадрат­ный трехчлен в виде произведе­ния линейных множителей.

Применять различные формы самоконтроля при вы­полне­нии преобразований

Алгебраические дроби

Алгебраическая дробь. Основное свой­ство ал­геб­раической дроби. Сокраще­ние дробей. Сложение, вы­чита­ние, умножение, деление алгеб­раиче­ских дробей.

Степень с целым показателем и ее свой­ства.

Рациональные выражения и их преобра­зова­ния. Доказательство тож­деств

Формулировать основное свой­ство алгебраи­ческой дроби и применять его для преобразо­вания дробей.

Выполнять действия с алгебраи­ческими дро­бями.

Пред­став­лять целое выраже­ние в виде много­члена, дробное — в виде отношения многочле­нов; доказывать тождества.

Формулировать определение степени с це­лым пока­зателем.

Формулировать, записывать в символиче­ской форме и иллю­стрировать примерами свойства степени с целым показа­телем; приме­нять свой­ства степени для преобразова­ния выражений и вычислений

Квадратные корни

Понятия квадратного корня, арифме­тиче­ского квадратного корня. Уравнение вида х2=а. Свойства арифме­тических квадрат­ных корней: ко­рень из произ­ведения, частного, сте­пени. Тождества, , где , . Применение свойств арифме­ти­че­ских квадратных корней для преобразова­ния числовых вы­ражений и к вычисле­ниям.

Доказывать свойства арифмети­ческих квад­ратных корней; применять их для пре­образо­вания выражений.

Вычислять значения выраже­ний, содержа­щих квад­ратные корни; выражать перемен­ные из геометрических и физиче­ских фор­мул.

Исследовать уравнение вида х2 = а; нахо­дить точ­ные и при­ближенные корни при

а 0

Уравнения

Уравнение с одной переменной. Корень уравне­ния. Свойства числовых ра­венств. Равно­сильность урав­нений.

Линейное уравнение. Решение уравне­ний, сводя­щихся к линейным.

Квадратное уравнение. Неполные квад­рат­ные урав­нения. Формула корней квад­ратного уравне­ния. Теоре­ма Виета. Решение уравне­ний, сводящихся к квадрат­ным. Биквадрат­ное уравнение.

Примеры решения уравнений третьей и четвер­той степени разложением на мно­жи­тели.

Решение дробно-рациональных уравне­ний.

Решение текстовых задач алгебраиче­ским спосо­бом

Распознавать линейные и квад­ратные уравне­ния, це­лые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; ре­шать дробно-рацио­нальные уравне­ния.

Исследовать квадратные уравне­ния по дискри­ми­нанту и коэффициентам.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления уравнения; ре­шать составленное уравнение; интер­претировать ре­зультат

Системы уравнений

Уравнение с двумя переменными. Линей­ное урав­нение с двумя перемен­ными. Примеры реше­ния урав­нений в целых числах.

Система уравнений с двумя перемен­ными. Равно­сильность систем уравне­ний. Система двух линейных уравнений с двумя перемен­ными; решение подстанов­кой и сложением. Решение сис­тем двух уравнений, одно из кото­рых линейное, а другое второй степени. При­меры решения систем нелинейных уравне­ний.

Решение текстовых задач алгебраиче­ским спо­собом.

Декартовы координаты на плоскости. Графиче­ская интерпретация уравнения с двумя перемен­ными.

График линейного уравнения с двумя перемен­ны­ми, угловой коэффициент пря­мой; условие парал­лельности пря­мых.

Графики простейших нелинейных уравне­ний (па­рабола, гипербола, окруж­ность).

Графическая интерпретация системы уравне­ний с двумя переменными

Определять, является ли пара чисел реше­нием дан­ного уравне­ния с двумя перемен­ными; приводить при­меры ре­шения уравне­ний с двумя пере­менными.

Решать задачи, алгебраической моделью кото­рых яв­ляется урав­нение с двумя перемен­ными; находить целые решения пу­тем перебора.

Решать системы двух уравне­ний с двумя пере­менны­ми, ука­занные в содержании.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления системы уравне­ний; решать составленную сис­тему уравне­ний; ин­терпретиро­вать результат.

Строить графики уравнений с двумя перемен­ными.

Конструи­ровать эквивалент­ные речевые вы­сказывания с использованием алгебраиче­ского и геометрического язы­ков.

Решать и исследовать уравне­ния и системы уравне­ний на ос­нове функционально-графиче­ских представле­ний уравнений

Неравенства

Числовые неравенства и их свойства.

Неравенство с одной переменной. Равно­силь­ность неравенств. Линейные неравенства с од­ной перемен­ной. Квадрат­ные неравенства.

Системы линейных неравенств с одной перемен­ной

Формулировать свойства число­вых нера­венств, ил­люстри­ровать их на координат­ной прямой, доказы­вать алгебраически; приме­нять свойства неравенств при ре­ше­нии задач.

Распознавать линейные и квад­ратные неравен­ства.

Ре­шать линейные неравенства, системы линей­ных нера­венств.

Решать квадратные неравен­ства на основе гра­фиче­ских пред­ставлений

Зависимости между величинами

Зависимость между величинами.

Представление зависимостей между вели­чи­нами в виде формул. Вычисления по форму­лам.

Прямая пропорциональная зависимость: зада­ние формулой, коэффициент пропор­цио­нально­сти; свой­ства. При­меры прямо пропор­циональных зависимо­стей.

Обратная пропорциональная зависи­мость: зада­ние формулой, коэффициент обратной про­порциональности; свой­ства. Примеры обрат­ных пропорцио­наль­ных зависимостей.

Решение задач на прямую пропорциональ­ность и обратную пропор­циональную зависимо­сти

Составлять формулы, выра­жающие зависимо­сти между ве­личинами, вычислять по форму­лам.

Распознавать прямую и обрат­ную пропорцио­наль­ные зависи­мости.

Решать тексто­вые за­дачи на прямую и обрат­ную про­порциональные зависимо­сти (в том числе с контек­стом из смежных дисцип­лин, из реаль­ной жизни)

РАЗДЕЛ. ФУНКЦИИ

Числовые функции

Понятие функции. Область определения и множе­ство значений функции. Спо­собы зада­ния функции. График функ­ции. Свойства функ­ции, их отображение на графике: возраста­ние и убывание функ­ции, нули функ­ции, сохранение знака. Чтение и построе­ние гра­фиков функций.

Примеры графиков зависимостей, отра­жаю­щих реальные процессы.

Функции, описывающие прямую и обрат­ную про­порциональные зависимо­сти, их графики.

Линейная функция, ее график и свой­ства.

Квадратичная функция, ее график и свой­ства.

Степенные функции с натуральными пока­зате­лями 2 и 3, их графики и свой­ства. Гра­фики функций

; ;

Вычислять значения функций, заданных фор­мулами (при необ­ходимости использо­вать калькулятор); со­ставлять таб­лицы значе­ний функций.

Строить по точкам графики функций. Описы­вать свойства функции на основе ее графиче­ского представ­ления.

Моделировать реальные зависи­мости форму­лами и графи­ками. Читать графики реаль­ных зависимостей.

Использовать функциональ­ную символику для запи­си раз­нообразных фактов, связан­ных с рассматриваемы­ми функ­циями, обогащая опыт выполне­ния знаково-символиче­ских действий. Стро­ить речевые конструкции с использо­ванием функциональ­ной терми­ноло­гии.

Использовать компьютерные программы для по­строения гра­фиков функций, для исследо­ва­ния положе­ния на координат­ной плоскости графиков функ­ций в за­висимо­сти от значений коэффициентов, входящих в фор­мулу.

Распознавать виды изучаемых функций. Пока­зывать схемати­чески положение на ко­ординатной плоскости графи­ков изучаемых функций в зави­симости от значений коэффи­ци­ентов, входящих в фор­мулы.

Строить графики изучаемых функций; описы­вать их

свойства

Числовые последовательности

Понятие числовой последовательно­сти. Зада­ние последовательности рекур­рентной фор­мулой и фор­мулой n-го члена.

Арифметическая и геометрическая про­грес­сии. Формулы n-го члена арифме­тиче­ской и геометриче­ской про­грессий, суммы первых п членов. Изобра­же­ние членов арифме­тической и геометрической про­грес­сий точками коор­динатной плоскости. Линей­ный и экспоненциаль­ный рост. Слож­ные про­центы

Применять индексные обозначе­ния, стро­ить рече­вые высказывания с использова­нием терминологии, свя­занной с понятием последо­вательно­сти.

Вычислять члены последова­тельностей, задан­ных форму­лой п-го члена или рекуррент­ной формулой.

Устанавливать закономерность в построе­нии последова­тельно­сти, если из­вестны пер­вые несколько ее чле­нов.

Изображать члены по­следователь­ности точ­ками на ко­ординатной плоскости.

Распознавать арифметическую и геометриче­скую прогрессии при разных спосо­бах задания.

Выводить на основе доказатель­ных рассужде­ний фор­мулы общего чле­на арифме­тической и геометрической про­грессий, суммы первых л членов арифметиче­ской и гео­метрической про­грессий; ре­шать задачи с использованием этих формул.

Рассматривать примеры из ре­альной жизни, иллю­стрирую­щие изменение в арифметиче­ской прогрессии, в геометриче­ской прогрес­сии; изображать соответствую­щие зависимо­сти графически.

Решать задачи на сложные про­центы, в том числе задачи из реальной практики (с исполь­зованием кальку­лятора)

Раздел Комбинаторика, статистика и теория вероятностей

Комбинаторика, статистика и теория вероятностей

Представление данных в виде таблиц, диаграмм. 
Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. 
Решение комбинаторных задач перебором вариантов. 

Решение комбинаторных задач перебо­ром ва­ри­антов. Комбинаторное правило умноже­ния. Переста­новки и фак­ториал

Понятие о случайном опыте и случай­ном со­бытии. Частота случайного события. Статисти­че­ский подход к поня­тию вероятно­сти. Вероятности проти­воположных событий. Достовер­ные и невозможные события. Равновоз­можность событий. Классическое опреде­ле­ние вероятности


Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др.
Выполнять сбор информации в несложных случаях, организовывать информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.

Выполнять перебор всех воз­можных вариан­тов для пере­счета объектов или комбина­ций.

Применять правило комбина­торного умноже­ния для реше­ния задач на нахожде­ние числа объектов или ком­бинаций (диа­го­нали многоугольника, рукопо­жатия, число ко­дов, шиф­ров, паролей и т. п.).

Распо­знавать задачи на опреде­ление числа переста­но­вок и выполнять соответствую­щие вычисления.

Решать задачи на вычисление вероятности с приме­нением ком­бинаторики
Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний «более вероятно», «маловероятно» и др.
Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

Проводить случайные экспери­менты, в том числе с помощью компьютерного моделирова­ния, интерпретиро­вать их резуль­таты.

Вычислять частоту слу­чайного собы­тия; оценивать ве­роятность с помощью частоты, получен­ной опытным путем.

Решать задачи на нахождение вероятностей событий.

Раздел Логика и множества

Логика и множества

Множество, элемент множества. Зада­ние мно­жеств перечислением элемен­тов, характери­стическим свойст­вом. Стандартные обозначения число­вых мно­жеств. Пустое множе­ство и его обозначение. Подмно­же­ство. Объедине­ние и пересечение множеств, раз­ность множеств.

Иллюстрация отношений между мно­жест­вами с помощью диаграмм Эйлера — Венна.

Понятия о равносильности, следова­нии, упот­реб­ление логических связок если то, в том и толь­ко том слу­чае. Логические связки и, или

Приводить примеры конечных и бесконеч­ных мно­жеств. Нахо­дить объединение и пересе­че­ние множеств. Приводить при­меры несложных классифика­ций.

Использовать теоретико-множе­ственную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математиче­ские понятия и утверж­дения при­мерами, теоретико-множественные понятия с помощью кругов Эйлера.

Использовать при­меры и контрпри­меры в аргумен­тации.

Конструировать математиче­ские предложе­ния с по­мощью связок если то, в том и только том слу­чае, логиче­ских связок и, или

РАЗДЕЛ. Геометрия

Наглядная геометрия

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. 
Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. 
[Построение на клетчатой бумаге.]
[Разрезание и составление геометрических фигур. Построение паркетов, орнаментов, узоров.]
[ Графы. Задача Эйлера о кёнигсбергских мостах.]
Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины. 
Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Равновеликие фигуры. [Равносоставленные фигуры.] 

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры разверток многогранников, цилиндра и конуса. 
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.


Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире.
Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге.
Измерять с помощью инструментов и сравнивать длины отрезков и величины углов. Строить отрезки заданной длины с помощью линейки и циркуля и углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие.
Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие.
Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра, конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, определять их вид. Соотносить пространственные фигуры с их проекциями на плоскость.
Вычислять объемы куба и прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.
Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение, моделирование. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов.
Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. 
Находить в окружающем мире плоские и пространственные симметричные фигуры.
Решать задачи на нахождение длин отрезков, периметров многоугольников; градусной меры углов; площадей квадратов и прямоугольников; объемов кубов и прямоугольных параллелепипедов. Выделять в условии задачи данные, необходимые для решения задачи, строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи
Изображать равные фигуры; симметричные фигуры. Конструировать орнаменты и паркеты, изображая их от руки, с помощью инструментов, а также используя компьютерные программы.

Прямые и углы

Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, раз­вернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свой­ства углов с параллельными и перпендикуляр­ными сторонами. Взаимное расположение прямых на плоскости: парал­лельные и пересекающиеся прямые. Перпенди­кулярные прямые. Теоремы о парал­лельности и перпендикулярности пря­мых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку. Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисле­ния. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопостав­лять полученный результат с условием задачи.


Треугольники

Треугольники. Прямоугольные, остро­уголь­ные и тупоугольные треуголь­ники. Вы­сота, медиана, биссек­т­риса, средняя линия треугольника. Равно­бедренные и равносторон­ние тре­угольники; свойства и при­знаки равнобед­ренного треугольника.

Признаки равенства треугольников. При­знаки ра­венства прямоугольных тре­угольни­ков. Неравенство треуголь­ника. Соотноше­ния между сторонами и угла­ми треугольника. Сумма углов тре­угольника. Внешние углы треугольника, теорема о внешнем угле треуголь­ника. Теорема Фалеса. Подобие тре­угольни­ков; коэф­фициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тан­генс, ко­тангенс острого угла прямо­угольного треугольника и углов от 0 до 180°; приведе­ние к острому углу. Реше­ние прямоугольных треугольников. Ос­новное тригоно­метриче­ское тождество. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: тео­рема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересе­чения серединных перпенди­куляров, биссектрис, ме­диан, высот и их продолжений

Формулировать определения прямоугольного, ост­ро­уголь­ного, тупоугольного, равнобед­ренного, равносто­роннего треугольников; вы­соты, медианы, биссек­трисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках.

Формулировать определение равных треугольников. Форму­лировать и доказы­вать теоремы о признаках ра­венства треугольников.

Объяснять и иллюстриро­вать неравенство тре­уголь­ника.

Формулировать и доказы­вать теоремы о свойствах и признаках равнобедренного треугольника, соотноше­ни­ях между сторонами и углами тре­угольника, сумме углов тре­угольника, внешнем угле треугольника, о сред­ней ли­нии треугольника.

Формулировать определение подобных треугольни­ков.

Формулировать и доказы­вать теоремы о призна­ках подо­бия треугольников, тео­рему Фалеса.

Формулировать определения и иллюстрировать поня­тия синуса, косинуса, тангенса и котангенса ост­рого угла прямо­угольного треугольника. Выводить формулы, выражаю­щие функции угла прямоугольного треугольни­ка через его стороны. Формулиро­вать и доказы­вать те­орему Пифагора.

Формулировать определения синуса, косинуса, тан­генса, ко­тангенса углов от 0 до 180°.

Выводить формулы, выражаю­щие функции углов от 0 до 180° через функции острых углов.

Формулиро­вать и разъяснять основное тригонометри­ческое тожде­ство. По значениям одной три­гонометрической функ­ции угла вычислять значе­ния дру­гих тригонометриче­ских функций этого угла.

Формули­ровать и доказы­вать теоремы синусов и коси­нусов.

Формулировать и доказы­вать теоремы о точках пересе­чения серединных пер­пендикуляров, биссек­трис, медиан, высот или их продолжений.

Исследовать свойства тре­угольника с помощью компь­ю­терных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления. Выделять в усло­вии задачи условие и заключе­ние.

Моделировать условие задачи с помощью чертежа или рисунка, прово­дить дополнительные по­строения в хо­де решения. Опираясь на данные усло­вия задачи, прово­дить необхо­димые рассуждения.

Интерпретировать полу­чен­ный результат и сопостав­лять его с условием задачи

Четырёхугольники

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равно­бедрен­ная трапеция

Формулировать определения параллелограмма, пря­моуголь­ника, квадрата, ромба, трапе­ции, равнобедрен­ной и прямо­угольной трапеции, средней линии трапе­ции; распозна­вать и изображать их на чер­тежах и рисун­ках.

Формулировать и доказы­вать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции.

Исследовать свойства четы­рехугольников с по­мо­щью компьютерных про­грамм.

Решать задачи на построение, доказательство и вы­числе­ния. Моделировать условие за­дачи с помощью чер­тежа или рисунка, проводить дополни­тельные по­строения в ходе ре­шения.

Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов реше­ния.

Интерпретировать получен­ный резуль­тат и сопостав­лять его с условием задачи

Многоугольники

Многоугольники. Выпуклые много­угольники. Сумма углов вы­пуклого многоугольника. Пра­вильные многоуголь­ники

Распознавать многоуголь­ники, формулировать оп­реде­ление и приводить при­меры многоугольников.

Формулировать и доказы­вать теорему о сумме уг­лов выпуклого многоугольника.

Исследовать свойства много­угольников с помощью компью­терных программ.

Решать задачи на доказатель­ство и вычисления.

Моделиро­вать условие за­дачи с помощью чертежа или рисунка, проводить дополни­тельные построения в ходе ре­шения.

Интерпретировать полученный результат и сопос­тав­лять его с условием задачи

Окружность и круг

Окружность и круг. Центр, радиус, диа­метр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, вели­чина вписанного угла. Взаимное располо­жение прямой и окружно­сти, двух окружностей. Касательная и секу­щая к окружности, их свойства.

Вписанные и описанные многоуголь­ники. Ок­руж­ность, вписанная в треуголь­ник, и ок­ружность, опи­санная около треугольника.

Вписанные и описанные окружности правиль­ного многоугольника. Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник, радиуса окружности, описанной около правильного многоугольника



Формулировать определения понятий, связанных с окружно­стью, центрального и вписанного углов, секу­щей и касательной к окружности, уг­лов, связанных с окруж­но­стью.

Формулировать и доказы­вать теоремы о вписан­ных уг­лах, углах, связанных с окруж­ностью.

Изображать, распознавать и описывать взаимное располо­жение прямой и окружности.

Изображать и формулиро­вать определения впи­сан­ных и описанных многоугольников и треугольников;

окружности, вписанной в тре­угольник, и окружности, описанной около треуголь­ника.

Формулировать и доказы­вать теоремы о вписанной и описанной окружностях тре­угольника и многоуголь­ника.

Исследовать свойства конфи­гураций, связанных с ок­ружностью, с помощью компьютерных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления.

Моделировать ус­ловие задачи с помощью чер­тежа или рисунка, прово­дить дополнительные по­строения в ходе решения.

Вы­делять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов реше­ния.

Ин­терпретировать получен­ный результат и сопостав­лять его с условием задачи

Геометрические преобразования

Понятие о равенстве фигур. Понятие движе­ния: осевая и центральная симмет­рии, парал­лельный пере­нос, поворот. По­нятие о подо­бии фигур и гомотетии

Объяснять и иллюстриро­вать понятия равенства фи­гур, подобия. Строить равные и симметричные фигу­ры, вы­полнять параллельный пере­нос и поворот.

Исследовать свойства движе­ний с помощью компь­ютер­ных программ.

Выполнять проекты по темам геометрических преоб­разова­ний на плоскости

Построения с помощью циркуля и линейки

Построения с помощью циркуля и ли­нейки. Основ­ные задачи на построение: деление от­резка пополам; построение угла, равного дан­ному; построение тре­угольника по трем сторо­нам; построение перпендику­ляра к пря­мой; построение биссектрисы угла; деление отрезка на п равных частей.


Решать задачи на построение с помощью циркуля и ли­нейки.

Находить условия существова­ния решения, выпол­нять построение точек, необходимых для построения ис­ко­мой фигуры.

Доказы­вать, что построенная фигура удовлетворяет условиям за­дачи (определять число реше­ний задачи при каждом возмож­ном выборе данных)

Измерение геометрических величин

Длина отрезка. Длина ломаной. Пери­метр много­угольника.

Расстояние от точки до прямой. Расстоя­ние между параллельными пря­мыми.

Длина окружности, число л; длина дуги окруж­ности.

Градусная мера угла, соответствие ме­жду величи­ной центрального угла и дли­ной дуги окружности.

Понятие площади плоских фигур. Равно­состав­ленные и равновеликие фигуры. Пло­щадь прямоугольни­ка. Пло­щади параллело­грамма, треугольника и трапе­ции (основные формулы). Фор­мулы, выражающие площадь треуголь­ника через две стороны и угол меж­ду ними, через периметр и радиус вписан­ной окруж­ности; формула Герона. Пло­щадь много­угольника. Площадь круга и площадь сектора. Соотношение меж­ду площадями по­добных фигур

Объяснять и иллюстриро­вать понятие периметра много­угольника.

Формулировать определения расстояния между точ­ка­ми, от точки до прямой, между парал­лельными пря­мыми.

Формулировать и объяснять свойства длины, гра­дус­ной меры угла, площади.

Формулировать соответствие между величиной централь­ного угла и длиной дуги окруж­ности.

Объяснять и иллюстриро­вать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, па­ралле­ло­грамма, треугольника и трапе­ции, а также фор­мулу, выра­жающую площадь треуголь­ника через две сто­роны и угол между ними, длину окружно­сти, пло­щадь круга.

Находить площадь многоуголь­ника разбиением на тре­угольники и четырех­угольники.

Объяснять и иллюстриро­вать отношение площадей по­добных фигур.

Решать задачи на вычисление линейных величин, градус­ной меры угла и площадей треуголь­ников, четы­рехуголь­ников и многоугольников, длины окружности и площади круга. Опираясь на данные ус­ловия задачи, на­ходить воз­можности применения необхо­димых фор­мул, преобразовы­вать формулы.

Использовать формулы для обоснования дока­затель­ных рассуждений в ходе решения.

Интерпретиро­вать получен­ный результат и сопо­став­лять его с условием задачи

Координаты

Декартовы координаты на плоскости. Уравне­ние прямой. Координаты сере­дины отрезка. Формула рас­стояния ме­жду двумя точками плоскости. Уравне­ние окружности

Объяснять и иллюстриро­вать понятие декартовой сис­темы координат.

Выводить и использовать формулы координат се­ре­дины отрезка, расстояния между двумя точками пло­скости, урав­нения прямой и окружно­сти.

Выполнять проекты по темам использования коор­динат­ного метода при решении задач на вычисления и доказательства

Векторы

Вектор. Координаты вектора на плоскости. Длина (модуль) вектора. Равен­ство векто­ров. Угол между векторами. Операции над векторами: ум­ножение вектора на число, сложение, скалярное произведение

Формулировать определения и иллюстрировать по­нятия век­тора, длины (модуля) век­тора, коллинеарных векторов, равных векторов.

Вычислять длину и коорди­наты вектора.

Находить угол между векто­рами.

Выполнять операции над век­торами.

Выполнять проекты по темам использования вектор­ного ме­тода при решении задач на вы­числения и доказа­тельства