Тип 1 № 27924
Около трапеции описана окружность. Периметр трапеции равен 22, средняя линия равна 5. Найдите боковую сторону трапеции.
2. Тип 2 № 27162
Объем первого шара в 27 раз больше объема второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
3. Тип 3 № 320209
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 10, но не дойдя до отметки 1.
4. Тип 4 № 508797
Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось ровно два броска? Ответ округлите до сотых.
5. Тип 5 № 77383
Найдите корень уравнения:
6. Тип 6 № 26790
Найдите если
7. Тип 7 № 27502
На рисунке изображен график производной функции f(x), определенной на интервале (−4; 8). Найдите точку экстремума функции f(x) на отрезке [−2; 6].
8. Тип 8 № 27999
Деталью некоторого прибора является квадратная рамка с намотанным на неe проводом, через который пропущен постоянный ток. Рамка помещена в однородное магнитное поле так, что она может вращаться. Момент силы Ампера, стремящейся повернуть рамку, (в Нм) определяется формулой где − сила тока в рамке, Тл — значение индукции магнитного поля, м — размер рамки, − число витков провода в рамке, − острый угол между перпендикуляром к рамке и вектором индукции. При каком наименьшем значении угла (в градусах) рамка может начать вращаться, если для этого нужно, чтобы раскручивающий момент M был не меньше 0,75 Нм?
9. Тип 9 № 99585
Вере надо подписать 640 открыток. Ежедневно она подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем. Известно, что за первый день Вера подписала 10 открыток. Определите, сколько открыток было подписано за четвертый день, если вся работа была выполнена за 16 дней.
10. Тип 10 № 509149
На рисунке изображены графики функций и которые пересекаются в точках A и B. Найдите абсциссу точки B.
11. Тип 11 № 315128
Найдите наибольшее значение функции на отрезке
12. Тип 12 № 500366
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
13. Тип 13 № 513684
В правильной четырехугольной призме ABCDA1B1C1D1 точка K делит боковое ребро AA1 в отношении AK : KA1 = 1 : 2. Через точки B и K проведена плоскость α, параллельная прямой AC и пересекающая ребро DD1 в точке M.
а) Докажите, что плоскость α делит ребро DD1 в отношении DM : MD1 = 2 : 1.
б) Найдите площадь сечения, если известно, что AB = 4, AA1 = 6.
14. Тип 14 № 515827
Решите неравенство
15. Тип 15 № 511894
В бассейн проведены три трубы. Первая труба наливает 30 м3 воды в час. Вторая труба наливает в час на 3V м3 меньше, чем первая (0 V V м3 больше первой. Сначала первая и вторая трубы, работая вместе, наливают 30% бассейна, а затем все три трубы, работая вместе, наливают оставшиеся 0,7 бассейна. При каком значении V бассейн быстрее всего наполнится указанным способом?
16. Тип 16 № 517502
Точки E и K — соответственно середины сторон CD и AD квадрата ABCD. Прямая BE пересекается с прямой CK в точке O.
а) Докажите, что вокруг четырёхугольника ABOK можно описать окружность.
б) Найдите AO, если сторона квадрата равна 1.
17. Тип 17 № 507636
Найдите все значения параметра a, при каждом из которых система
имеет единственное решение.
18. Тип 18 № 512876
а) Существует ли конечная арифметическая прогрессия, состоящая из пяти натуральных чисел, такая, что сумма наибольшего и наименьшего членов этой прогрессии равна 99?
б) Конечная арифметическая прогрессия состоит из шести натуральных чисел. Сумма наибольшего и наименьшего членов этой прогрессии равна 9. Найдите все числа, из которых состоит эта прогрессия.
в) Среднее арифметическое членов конечной арифметической прогрессии, состоящей из натуральных чисел, равно 6,5. Какое наибольшее количество членов может быть в этой прогрессии?