СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по математике 11 класс

Категория: Математика

Нажмите, чтобы узнать подробности

Рабочая программа по математике, 11 класс, профильный уровень.

Просмотр содержимого документа
«Рабочая программа по математике 11 класс»





Рабочая программа по математике

11 класс


Профильный уровень



2. Пояснительная записка



2.1. Нормативно-правовые документы. Рабочая программа по математике для 11 класса составлена на основе примерной программы среднего (полного) общего образования по математике (профильный уровень).

-Закон об образовании в Российской Федерации «№273-ФЗ» от 2012года;

-Федеральный компонент государственного стандарта общего образования. Стандарт основного общего образования по математики.//Вестник образования России.2004.№12 с.107-119.

-Примерная программа среднего (полного) общего образования по математике, рекомендованная Министерством образования и науки РФ / Сборник нормативных документов.Математика / сост. Э.Д.Днепров, А.Г.Аркадьев.-2-е изд. стереотип.-М:

Дрофа,2008

-Приказ Министерства образования РФ от 10.11.2011г.№2643.



Тип программы: программа среднего (полного) общего образования.


Статус программы: рабочая программа учебного курса.


Назначение программы:

 для обучающихся (слушателей) образовательная программа обеспечивает реализацию их права на информацию об образовательных услугах, права на выбор образовательных услуг и права на гарантию качества получаемых услуг;

 для педагогических работников МБОУ «СОШ №5» программа определяет приоритеты в содержании среднего (полного) общего образования и способствует интеграции и координации деятельности по реализации среднего (полного) общего образования;

 для администрации МБОУ «СОШ №5» программа является основанием для определения качества реализации среднего (полного) общего образования.


Категория обучающихся: обучающиеся 11-А класса МБОУ «СОШ № 5».


Сроки освоения программы: 1 год.


Объем учебного времени: 272часов.


Форма обучения: очная.


Режим занятий: 8 часов в неделю


Формы контроля: ЕГЭ



УМК

А.Г. Мордкович, П.В. Семенов. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений (профильный уровень). М. «Мнемозина», 2014.

А.Г. Мордкович и др. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч.1. Задачник для учащихся общеобразовательных учреждений (профильный уровень). М. «Мнемозина», 2014.

В.И. Глизбург. Алгебра и начала анализа (профильный уровень). Контрольные работы. 11 класс, Москва, «Мнемозина», 2014.

Геометрия, 10-11: Учебник для общеобразоват. учреждений: базовый и профильный уровни /Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2014.





2.2. Общая характеристика учебного предмета.

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

• систематизация сведений о числах; формирование представлений о





расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

• развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

• систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

• расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

• развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

• совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.


2.3. Цели и задачи обучения в 11 классе.


Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;



  • овладение устным и письменным математическим языком, математическими

  • знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе и его применение к решению математических и нематематических задач;

  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  • изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;




  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

  • знакомство с основными идеями и методами математического анализа.

2.4. Место предмета в учебном плане школы.

Изучение курса математики в 11 классе (профильный уровень) рассчитано на 272 часа из расчёта 8 часов в неделю.

2.5. Общеучебные умения, навыки и способы деятельности. Универсальные учебные действия.

В ходе изучения математики в профильном курсе старшей школы обучающиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт

  • проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

  • решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

  • планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;



  • самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

В ходе освоения содержания математического образования обучающиеся овладевают системой личностных, регулятивных, познавательных, коммуникативных универсальных учебных действий, построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;




  • выполнение и самостоятельное составление алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

  • самостоятельная работа с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

  • проведение доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

  • самостоятельная и коллективная деятельность, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.




  • развитие у обучающихся способности к самосознанию, саморазвитию и самоопределению;
  • формирование личностных ценностно-смысловых ориентиров и установок, способности их использования в учебной, познавательной и социальной практике;
  • самостоятельного планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, к построению индивидуальной образовательной траектории;
  • формирование у обучающихся системных представлений и опыта применения методов, технологий и форм организации проектной и учебно-исследовательской деятельности для достижения практико-ориентированных результатов образования;
  • формирование навыков разработки, реализации и общественной презентации обучающимися результатов исследования, индивидуального проекта, направленного на решение научной, личностно и (или) социально значимой проблемы.






3. Учебно-тематическое планирование.


11 класс

Разделы курса

Кол-во часов

Количество контр. работ

1

Повторение курса 10 кл.

6

-

2

Многочлены

17

1

3.

Степени и корни. Степенные функции

33

2

4.

Показательная, логарифмическая функции

48

2

5.

Первообразная и интеграл

13

1

7.

Элементы теории вероятностей и математической статистики

13

-

8.

Уравнения и неравенства. Системы уравнений и неравенств

48

2





9.

Метод координат в пространстве.

15

2

10.

Цилиндр, конус, шар.

16

1

11.

Объемы тел.

25

2

12.

Диагностические работы в формате ЕГЭ.

9


13.

Повторение курса 10 и 11 кл.

29



Итого

272

13




4. Содержание курса ( алгебра и начала анализа ).


ПОВТОРЕНИЕ. Тригонометрические функции. Тригонометрические уравнения. Производная.

МНОГОЧЛЕНЫ. Многочлены от одной и нескольких переменных. Теорема Безу. Схема Горнера. Симметрические и однородные многочлены. Уравнения высших степеней.

СТЕПЕНИ И КОРНИ. СТЕПЕННЫЕ ФУНКЦИИ. Понятие корня n-й степени из действительного числа. Функции , их свойства и графики. Свойства корня n-й степени. Преобразование выражений, содержащих радикалы. Обобщение понятия о показателе степени. Степенные функции, их свойства и графики (включая дифференцирование и интегрирование). Извлечение корней n-й степени из комплексных чисел.

ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ. Показательная функция, ее свойства и график. Показательные уравнения и неравенства. Понятие логарифма. Функция , ее свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Дифференцирование показательной и логарифмической функций.

ПЕРВООБРАЗНАЯ И ИНТЕГРАЛ. Первообразная и неопределенный интеграл. Определенный интеграл, его вычисление и свойства. Вычисление площадей плоских фигур. Примеры применения интеграла в физике.

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ. Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.







УРАВНЕНИЯ И НЕРАВЕНСТВА. СИСТЕМЫ УРАВНЕНИЙ И НЕРАВЕНСТВ. Равносильность уравнений. Общие методы решения уравнений. Уравнения с модулями. Иррациональные уравнения. Доказательство неравенств. Решение рациональных неравенств с одной переменной. Неравенства с модулями. Иррациональные неравенства. Уравнения и неравенства с двумя переменными. Диофантовы уравнения. Системы уравнений. Уравнения и неравенства с параметрами.

КООРДИНАТЫ И ВЕКТОРЫ. Понятие вектора. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Длина вектора в координатах, угол между векторами в координатах. Коллинеарные векторы, колллинеарность векторов в координатах.

ТЕЛА И ПОВЕРХНОСТИ ВРАЩЕНИЯ. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

ОБЪЕМЫ ТЕЛ И ПЛОЩАДИ ПОВЕРХНОСТЕЙ. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

ПОВТОРЕНИЕ. Числовые функции. Преобразования тригонометрических выражений. Производная. Первообразная и интеграл. Показательные и логарифмические уравнения и неравенства.





5. Требования к уровню подготовки выпускников.


В результате изучения математики на профильном уровне в старшей школе ученик должен

Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;








  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

  • вероятностных характер различных процессов и закономерностей окружающего мира.


Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;

  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;

  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для


  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.



Функции и графики

Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;


Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • описания и исследования с помощью функций реальных зависимостей, представления их графически;

  • интерпретации графиков реальных процессов.



Начала математического анализа

Уметь

  • находить сумму бесконечно убывающей геометрический прогрессии;

  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;

  • исследовать функции и строить их графики с помощью производной,;

  • решать задачи с применением уравнения касательной к графику функции;

  • решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

  • вычислять площадь криволинейной трапеции;



Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.


Уравнения и неравенства

Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

  • находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;


Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • построения и исследования простейших математических моделей.



Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для


  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;

  • анализа информации статистического характера.



Стереометрия

должны знать:

  • Многогранники. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная. призма. Правильная призма. Параллелепипед. Куб.

  • Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

  • Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

  • Сечения куба, призмы, пирамиды.

  • Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

  • Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

  • Шар и сфера, их сечения, касательная плоскость к сфере.

  • Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

  • Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

  • Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

  • Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов.

должны уметь:

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов)

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

  • владеть компетенциями: учебно – познавательной, ценностно – ориентационной, рефлексивной, коммуникативной, информационной, социально – трудовой.


Способны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройств.





Содержание рабочей программы.


Наименование раздела программы

Тема урока

Содержание учебного материала

Требования к уровню подготовки учащихся

Многочлены.

1. Многочлены от одной переменной.

Арифметические операции над многочленами от одной переменной.

Деление многочлена на многочлен.

Разложение многочлена на множители.

Знать:

- алгоритм действий с многочленами;

- способы разложения многочлена на множители;

-Уметь:

- выполнять действия с многочленами;

- находить корни многочлена с одной переменной;

- раскладывать многочлены на множители.

2. Многочлены от нескольких переменных.

Действия с многочленами.

Разложение многочленов на множители.

Однородная и симметрическая системы.

3.Уравнения высших степеней.

Способы решения уравнений степени выше второй.


Контрольная работа №1.




Степени и корни. Степенные функции.





















4. Понятие корня n-ой степени из действительного числа.

Определение корня n-ой степени четной и нечетной степени.

Решение иррациональных уравнений.

Знать:

- свойства корня n-ой степени;

- свойства функции .

Уметь:

- находить значение корня натуральной степени;

- проводить преобразования числовых и буквенных выражений, содержащих радикалы;

- пользоваться оценкой и прикидкой при практических расчетах;

- строить графики функции , выполнять преобразования графиков;

- решать уравнения и неравенства, используя свойства функции и ее графическое представление.

5. Функции , их свойства и графики.

Свойства функции при четном и нечетном значении n. Построение графиков функций, содержащих корень n-ой степени.

6. Свойства корня n-ой степени.

Доказательство свойств корня n-ой степени.

7. Преобразование выражений, содержащих радикалы.

Применение свойств корня n-ой степени при преобразовании иррациональных выражений.

8. Понятие степени с любым рациональным показателем

Определение степени с рациональным показателем. Преобразование выражений, содержащих степени с рациональным показателем.

Знать:

- определение степени с рациональным показателем.

Уметь:


- находить значение степени с рациональным показателем;

- проводить преобразования числовых и буквенных выражений, содержащих степени; - строить графики степенных функций, выполнять преобразования графиков;




9. Степенные функции, их свойства и графики.

Свойства степенных функций в зависимости от показателя.

Знать:

- свойства степенных функций.

Иметь представление о формуле для извлечения корня n-ой степени из комплексного числа.

Уметь:

- описывать по графику и формуле свойства степенной функции;

- решать уравнения и неравенства, используя свойства степенных функции и их графическое представление.

10. Извлечение корня из комплексного числа.

Определение корня n-ой степени из комплексного числа. Вывод формулы для извлечения корня n-ой степени из комплексного числа.

Контрольные работы № 2, 3


Уметь применять изученный теоретический материал при выполнении письменной работы

Показательная и логарифмическая функции.

11. Показательная функция, ее свойства и график.

Определение показательной функции. Свойства показательной функции в зависимости от основания. Решение показательных уравнений и неравенств, используя график.

Знать:

- определение показательной функции;

- свойства показательной функции;

- способы решения показательных уравнений и неравенств;

- определение логарифма;

-свойства логарифмической функции;

- способы решения логарифмических уравнений и неравенств;

- определение натурального логарифма;

- формулы производных показательной и логарифмической функций.

Уметь:

- находить значение логарифмов;

- строить графики логарифмической и показательной функций, выполнять преобразования графиков;

- описывать по графику и формуле свойства логарифмической и показательной функций;

- решать уравнения и неравенства, используя свойства показательных и логарифмических функции и их графическое представление;

- решать показательные и логарифмические уравнения и неравенства и их системы.

- проводить преобразования выражений, содержащих логарифмы;

- вычислять производные показательной и логарифмической функций.

12. Показательные уравнения.

Методы решения показательных уравнений.

13. Показательные неравенства.

Способы решения показательных неравенств.

14. Понятие логарифма.

Определение логарифма. Нахождение значений логарифмов по определению.

15. Логарифмическая функция, ее свойства и график.

Определение логарифмической функции. Зависимость свойств логарифмической функции от основания логарифма. Построение графиков логарифмической функции, решение логарифмических уравнений и неравенств с помощью графиков.





16. Свойства логарифмов.

Доказательство свойств логарифмов. Вывод формулы перехода к новому основанию. Применение свойств логарифмов к преобразованию выражений.

17. Логарифмические уравнения.

Способы решения логарифмических уравнений.

18. Логарифмические неравенства.

Способы решения логарифмических неравенств.

19. Дифференцирование показательной и логарифмической функций.

Число е. Функция , ее свойства, график, дифференцирование. Натуральные логарифмы. Формулы производных показательной и логарифмической функций.

Контрольные работы № 4, 5


Уметь применять изученный теоретический материал при выполнении письменной работы

Первообразная и интеграл.

20. Первообразная и неопределенный интеграл.

Определение первообразной. Правила отыскания первообразных. Неопределенный интеграл.

Знать:

- определение первообразной;

- правила отыскания первообразных;

- формулы первообразных элементарных функций;

- определение криволинейной трапеции.

Уметь:

- вычислять первообразные элементарных функций, применяя правила вычисления первообразных;

- вычислять площадь криволинейной трапеции.

21. Определенный интеграл.











Задачи, приводящие к понятию определенного интеграла. Понятие определенного интеграла. Формула Ньютона – Лейбница. Площадь криволинейной трапеции.

Элементы теории вероятности и математической статистики.






22. Вероятность и геометрия.

Классическое определение вероятности. Правило для нахождения геометрических вероятностей.

Уметь:

- решать простейшие комбинаторные задачи с использование известных формул;

- использовать знания в практической деятельности для анализа числовых данных, представленных в виде диаграмм и графиков; для анализа информации статистического характера.

23. Независимые повторения испытаний с двумя исходами.

Схема Бернулли. Многоугольник распределения. Правило нахождения вероятного числа «успехов».

24. Статистические методы обработки информации.

Порядок преобразования полученной информации. Паспорт данных измерения. Графическое изображение информации. Нахождение среднего значения данных.

25. Гауссова кривая. Закон больших чисел.

Кривая нормального распределения. Приближенные вычисления. Закон больших чисел.

Уравнения и неравенства. Системы уравнений и неравенств.

26. Равносильность уравнений.

Теоремы а равносильности уравнений. Преобразование данного уравнения в уравнение – следствие. Проверка корней. Потеря корней.

Знать:

- определение равносильности уравнений и неравенств;

- способы решения уравнений и систем уравнений;

- понятия системы и совокупности неравенств.

Уметь:

-решать уравнения, неравенства и системы с применением графических представлений и свойств функций;

- доказывать несложные неравенства;

- изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.


27. Общие методы решения уравнений.

Замена уравнения уравнением . Метод разложения на множители. Метод введения новой переменной. Функционально-графический метод.

28. Равносильность неравенств.

Теоремы о равносильности неравенств. Системы и совокупности неравенств.

29. Уравнения и неравенства с модулем.

Способы решения уравнений и неравенств с модулем.

30. Уравнения и неравенства со знаком радикала.

Иррациональные уравнения. Иррациональные неравенства.

31. Доказательство неравенств.

Доказательство неравенств с помощью определения. Синтетический метод доказательства неравенств. Доказательства неравенств методом от противного.

32. Уравнения и неравенства с двумя переменными.

Диофантовы уравнения. Графический способ решения неравенств с двумя переменными.

33. Системы уравнений.

Способы решения систем уравнений.

34. Задачи с параметрами


Определение уравнений с параметром. Примеры уравнений с параметром и способы их решения.

Контрольные работы № 7,8.



Уметь применять изученный теоретический материал при выполнении письменной работы

Метод координат в пространстве. Движения.





1. Координаты точки и координаты вектора.

Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Простейшие задачи в координатах.

Знать:

-алгоритмы: разложения векторов по координатным векторам; сложения двух и более векторов; произведения вектора на число; разности двух векторов;

- признаки коллинеарности и компланарности векторов;

- формулы: координат середины отрезка; длины вектора; расстояния между двумя точками;

- формулу нахождения скалярного произведения векторов.

Иметь представление: об угле между векторами, скалярном квадрате вектора; о каждом из видов движения.

Уметь:

- строить точки по их координатам, находить координаты векторов;

-находить сумму и разность векторов,

- применять формулы: координат середины отрезка; длины вектора; расстояния между двумя точками для решения задач координатно-векторным способом;

- находить угол между прямой и плоскостью;

- уметь выполнять построение фигуры, симметричной относительно оси симметрии, центра симметрии, плоскости, при параллельном переносе.

2. Скалярное произведение векторов.

Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями.

3. Движения.

Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос.

Контрольная работа по теме

«Вектор».


Уметь применять изученный теоретический материал при выполнении письменной работы

Цилиндр. Конус. Шар.

1. Цилиндр

Понятие цилиндра. Площадь поверхности цилиндра.

Иметь представление о цилиндре.

Знать:

- формулы площадей боковой и полной поверхностей цилиндра.

Уметь:

- выполнять чертежи по условию задачи;

- строить осевое сечение цилиндра и находить его площадь;

- решать задачи на нахождения площади боковой и полной поверхности цилиндра.


2. Конус.

Понятие конуса. Площадь поверхности конуса. Усеченный конус.

Знать:

- элементы конуса;

-элементы усеченного конуса;

- формулы площади боковой и полной поверхности конуса и усеченного конуса.

Уметь:

- уметь выполнять построение конуса и усеченного конуса и их сечений;

- находить элементы конуса и усеченного конуса;

- решать задачи на нахождение площади поверхности конуса и усеченного конуса.

3.Шар.












Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Знать:

- определение сферы и шара;

- свойства касательной к сфере;

- уравнение сферы;

-формулу площади сферы.

Уметь:

- определять взаимное расположение сфер и плоскости;

- составлять уравнение сферы по координатам точек;

- уметь решать типовые задачи на нахождение площади сферы.

Контрольная работа по теме «Цилиндр. Конус. Шар»


Уметь использовать приобретенные знания и умения в практической деятельности для вычисления площадей поверхностей тел.

Объемы тел.








1. Объем прямоугольного параллелепипеда.

Понятие объема. Объем прямоугольного параллелепипеда.

Знать:

- формулы объемов прямоугольного параллелепипеда, прямой и наклонной призм, цилиндра, конуса, шара;

- знать метод вычисления объема через определенный интеграл;

- формулу площади сферы.

Иметь представление шаровом сегменте, шаровом секторе, слое.

Уметь:

- решать задачи на нахождение объемов;

- решать задачи на вычисление площади сферы.

2. Объем прямой призмы и цилиндра.

Объем прямой призмы. Объем цилиндра.

3. Объем наклонной призмы, пирамиды и конуса.

Вычисление объемов тел с помощью определенного интеграла. Объем наклонной призмы. Объем пирамиды. Объем конуса

4. Объем шара и площадь сферы.

Объем шара. Объем шарового сегмента, шарового слоя и шарового сектора. Площадь сферы.

Контрольные работы по темам «Объемы тел» и «Объем шара».


Уметь использовать приобретенные знания и умения в практической деятельности для вычисления объемов.

Итоговое повторение

Алгебра и начала анализ.

Преобразование тригонометрических, логарифмических, выражений, выражений, содержащих степень. Решение всех видов уравнений, неравенств, систем уравнений и неравенств. Производная. Функции и графики.

Уметь использовать приобретенные знания и умения в практической деятельности для решения задач разного уровня сложности на основе изученного материала.

Геометрия.

Треугольники. Четырехугольники. Окружность. Многогранники. Тела вращения.

Уметь использовать приобретенные знания и умения в практической деятельности для решения задач на основе изученных формул и свойств фигур.

Алгебра.

Решение текстовых задач, решение рациональных неравенств, чтение графиков.

Уметь решать текстовые задачи всех видов.










Тематическое планирование

Алгебра 11 класс, профильный уровень (автор Мордкович А.Г.)

6 часов в неделю, всего 204 часа



Тема

Кол – во часов

Дата по плану

Дата по факту

Корректировка


Повторение материала 10 класса.

6





Глава «Многочлены».

17




1

Многочлены от одной переменной.

6




2

Многочлены от нескольких переменных.

5




3

Уравнения высших степеней.

3





Контрольная работа №1 по теме: «Многочлены».

2




4

Анализ контрольной работы.

1





Глава «Степени и корни. Степенные функции».

33




5

Понятия корня n-й степени из действительного числа.

2




6

Функции y= ,их свойства и графики.

5




7

Свойства корня n-й степени.

5




8

Преобразование выражений, содержащих радикалы.

5





Контрольная работа №2 по теме: «Преобразование выражений, содержащих радикалы».

2




9

Понятие степени с любым рациональным показателем.

4




10

Степенные функции, их свойства и графики.

6




11

Извлечение корня из комплексного числа

2





Контрольная работа №3 по теме «Степенные функции».

2





Глава «Показательная и логарифмическая функции».

48




12

Показательная функция, её свойства и график.

6




13

Показательные уравнения.

6




14

Показательные неравенства.

4




15

Понятие логарифма.

2




16

Логарифмическая функция, её свойства и график.

4





Контрольная работа №4 по теме «Показательная и логарифмическая функции».

2




17

Свойства логарифмов.

6





Диагностическая работа в формате ЕГЭ.

3




18

Логарифмические уравнения.

6




19

Логарифмические неравенства.

5





20

Дифференцирование показательной и логарифмической функций.

5






21

Контрольная работа №5 по теме

«Логарифмические уравнения и неравенства».

2






Глава «Первообразная и интеграл».

13




22

Первообразная и неопределённый интеграл.

4




23

Определённый интеграл.

7




24

Контрольная работа №6 по теме «Первообразная и интеграл».

2





Диагностическая работа в формате ЕГЭ.

3





Глава «Элементы теории вероятностей и математической статистики».

13




25

Вероятность и геометрия.

3




26

Независимые повторения испытаний с двумя исходам.

4




27

Статистические методы обработки информации.

3




28

Гауссова кривая. Закон больших чисел.

3





Глава «Уравнения и неравенства. Системы уравнений и неравенств».

48




29

Равносильность уравнений.

4




30

Общие методы решения уравнений.

4




31

Равносильность неравенств.

4




32

Уравнения и неравенства с модулями.

5





Контрольная работа №7 по теме «Уравнения и неравенства».

2





Диагностическая работа в формате ЕГЭ.

3




33

Уравнения и неравенства со знаком радикала.

5




34

Уравнения и неравенства с двумя переменными.

4




35

Доказательство неравенств.

5




36

Системы уравнений.

6





Контрольная работа №8 по теме «Системы уравнений».

2




37

Задачи с параметрами.

7





Повторение.

26







Тематическое планирование

Геометрия 11 класс (автор Атанасян Л.С.)

2 часа в неделю, всего 68 часов


Тема

Кол – во

часов

Дата проведения


Глава «Метод координат в пространстве».

15


1

Прямоугольная система координат в пространстве.

1


2

Координаты вектора. Координаты точек.

2


3

Простейшие задачи в координатах.

4



Контрольная работа №1 по теме «Простейшие задачи в координатах».

1


4

Угол между векторами.

1


5

Скалярное произведение векторов.

1


6

Вычисление углов между прямыми и плоскостями.

1


7

Зеркальная симметрия. Осевая симметрия.

1


8

Центральная симметрия. Параллельный перенос.

1


9

Решение задач по теме: «Метод координат в пространстве».

1



Контрольная работа №2 по теме: «Метод координат в пространстве».

1



Глава «Цилиндр. Конус. Шар».

16


10

Понятие цилиндра.

1


11

Цилиндр. Решение задач.

2


12

Конус.

2


13

Усечённый конус.

1


14

Сфера. Уравнение сферы.

1


15

Взаимное расположение сферы и плоскости.

1


16

Касательная плоскость к сфере.

1


17

Площадь сферы.

1


18

Решение задач.

3


19

Зачёт по теме: «Тела вращения».

1


20

Решение задач.

1



Контрольная работа №3 по теме: «Тела вращения».

1



Глава «Объём тел».

25


21

Понятие объёма. Объём прямоугольного параллелепипеда.

3


22

Объём прямой призмы.

2


23

Объём цилиндра.

2


24

Вычисление объёмов тел с помощью интеграла.

1


25

Объём наклонной призмы.

1


26

Объём пирамиды.

3


27

Объём конуса.

3



Контрольная работа №4 по теме: «Объём призмы».

1


28

Объём шара.

3


29

Объём шарового сегмента, слоя, сектора.

2


30

Площадь сферы. Решение задач.

3



Контрольная работа №5 по теме: «Площадь сферы. Объём шара».

1



Итоговое повторение.

12





















22