Алымкул Усонбаев атындагы «Арал» орто мектеби математика мугалими Арапова Кундуз
Виеттин теоремасы
Квадраттык тендеме
- ax 2 +bx+c=0 , турундогу тендеме квадраттык тендеме деп аталат
мында a, b, с R (a 0) ар кандай анык сандар.
a, b, с сандары томонкудой аталышка ээ :
a – биринчи коэффициент , b - экинчи коэффициент , с – бош мучо .
Келтирилген квадраттык тендеме
Каалагандай ax 2 +bx+c=0 , мында a, b, с R квадраттык тендемени, анын эки жагын тен a 0 го болуп x 2 + p x+q=0 турундогу келтирилген квадраттык тендемеге келтирууго болот. Мында x 2 тын коэффициенти a=1 барабар.
Виеттин теоремасы
- Эгерде x 2 + px + q = 0 тендемесинин тамырлары x 1 жана x 2 болсо, анда
x 1 + x 2 = – p жана x 1 x 2 = q формулалары аткарылат.
- Башкача айтканда келтирилген квадраттык тендеменин тамырларынын суммасы карама-каршы белги менен алынган экинчи коффициентке, ал эми тамырларынын кобойтундусу-бош мучого барабар.
Далилдоо
Виеттин теоремасына тескери теорема
Мисал: Тендеменин тамырларын эсептөө
Көңүл бурганыңар үчүн чоң рахмат!!!