Тема: « Понятие объема. Свойства объема.
Объем прямоугольного параллелепипеда»
Цель занятия: Ввести понятие объема тела, рассмотреть свойства объемов, теорему об объеме прямоугольного параллелепипеда и следствие об объеме; сформировать умение применять данный материал при решении задач.
ХОД ЗАНЯТИЯ
Организационный момент
Сообщение темы и целей занятия, актуальность данной темы
Актуализация знаний
Что называется параллелепипедом? прямоугольным параллелепипедом? Какие свойства прямоугольного параллелепипеда вы знаете?
III. Объяснение нового материала
1) Понятие объема тела
Еще в глубокой древности у людей возникла необходимость в измерении количества различных веществ. Сыпучие вещества и жидкости можно было мерить, наполняя ими сосуды определенной вместимости, т.е. определяя их количество по объему. Понятие объема в стереометрии вводится аналогично понятию площади в планиметрии. В планиметрии мы определяли площадь так: площадь многоугольника – это величина той части плоскости, которую занимает многоугольник. Сформулировать аналогично данному понятию понятие объема. Величина части пространства, занимаемого геометрическим телом, называется объемом этого тела.
2) Единицы измерения объема
В повседневной жизни нам часто приходится определять объемы различных тел. Например, коробки, банки. В житейской практике единицами объема служили меры емкости, используемые для хранения сыпучих и жидких тел.
Среди них английские меры:
Бушель – 36,4 дм3
Галлон – 4,5 дм3
Баррель (сухой) – 115,628 дм3
Баррель (нефтяной) – 158,988 дм3
Английский баррель для сыпучих веществ 163,65 дм3.
В Киевской Руси существовала мера зерна – кадь. ( Это примерно 230 кг ржи) Жидкости же мерили бочками и ведрами. В XIX в. система мер жидкости имела вид:
Ведро – 12 дм3
Бочка – 490 дм3
Штоф – 1,23 дм3 = 10 чарок
Чарка – 0,123 дм3=0,1 штофа = 2 шкалика
Шкалик – 0,06 дм3 = 0,5 чарки.
Для того, чтобы определить какая из двух емкостей вместительнее, можно заполнить одну из них водой, а затем проверить, вся ли вода поместится в другую, и если вся, то заполнит ли она ее полностью. Однако решить эту задачу иначе – вычислить объем каждой емкости. Для этого нам нужны единицы объемов. Когда в планиметрии мы вводили единицы площади, то за единицу площади брали квадрат со стороной 1 см (1 см2). Аналогично, за 1см3 принимаем куб с ребром 1 см. Процедура измерения объемов аналогична процедуре измерения площадей. Число измерения (единичных кубов) и частей единицы, содержащихся в данном теле, принимается за числовое значение объема при выбранной единице измерения. Это число может быть как рациональным (в частности, целым), так и иррациональным.
3) Свойства объемов
Аналогичны свойствам площадей в планиметрии.
Равные тела имеют равные объемы. (Понятие определяется на основе понятия наложения).
Объем тела, состоящего из некоторых частей, равен сумме объемов этих частей.
Объем куба с ребром а равен а3.
4) Объем прямоугольного параллелепипеда
Поиск формул, позволяющих вычислять объемы различных тел, был долог.
В древнеегипетских папирусах, в вавилонских клинописных табличках встречаются правила для нахождения объема усеченной пирамиды, но не сообщаются правила для вычисления объема полной пирамиды.
Определять объемы призмы, пирамиды, цилиндра и конуса умели древние греки еще задолго до Архимеда. Но только он имел общий метод, позволяющий определить любую площадь или объем. Идеи Архимеда легли в основу интегрального исчисления. Сам ученый определил с помощью своего метода площади, объемы почти всех тел, которые рассматривались в античной математике. На могильной плите Архимеда, как завещал ученый, был изображен цилиндр с вписанным шаром, а эпитафия говорила о величайшем открытии Архимеда – о том, что объемы этих тел относятся как 3 : 2.Когда Римский оратор и общественный деятель Цицерон, живший в 1 в. до н.э., был в Сицилии, он еще видел этот заросший кустами и терновником памятник с шаром и цилиндром.
Мы будем находить объем прямоугольного параллелепипеда, используя следующую теорему ( давно знакомая вам формула, попробуйте сформулировать эту теорему):
Теорема: Объем прямоугольного параллелепипеда равен произведению трех его измерений.
V = abc
5) Следствия
Рассмотрим следствия из данной теоремы
1. Объем прямоугольного параллелепипеда, равен произведению площади основания на высоту.
IV. Закрепление
Задача 1
Сколько пакетов с соком войдет в коробку?
Задача 2
Найдите объем тела:
Задача 3
Сколько литров воды вмещает бак, имеющий форму куба с ребром 6 дм?
Задача 4
За сутки человек совершает вдох и выдох примерно 23 000 раз. За один вдох в легкие поступает 500 см3 воздуха. Какой объем воздуха (в литрах) проходит через легкие человека за сутки?
Задача 5
Больному прописали глазные капли, по 2 капли 3 раза в день в оба глаза. Во флаконе 10 мл лекарства. Объем капли 1/9 мл. Хватит ли одного флакона на неделю?
Задача 6. Измерения прямоугольного параллелепипеда равны 8 см, 12 см и 18 см. найдите ребро куба, объем которого равен объему этого параллелепипеда.
Учащиеся решают данную задачу на листочках, затем в рабочую тетрадь записывают только ответ, а листок с решением сдают учителю. После этого решение с ответом отображается на экране, учащиеся проверяют свое решение и ответ.
Задача 7. Диагональ прямоугольного параллелепипеда равна 18 см и составляет угол в 30° с плоскостью боковой грани и угол в 45°с боковым ребром. Найдите объем прямоугольного параллелепипеда.
Учащиеся на местах обдумывают решение, затем один выходит к доске и демонстрирует решение.
Решение задач из учебного пособия №134, 137, 138, 145
V. Итог занятия
Что такое объем тела? Какие единицы измерения вы знаете? Какие свойства объема вы знаете? Сформулируйте теорему о объеме прямоугольного параллелепипеда и следствия из нее.
VI. Домашнее задание
Гл.2 §1, №135, 147 Выучить основные определения и теоремы
Дополнительное задание(для дистанционного обучения)
!Придумать задачу с практическим содержанием на нахождение объема прямоугольного параллелепипеда, решить ее.
! Сделать модель прямоугольного параллелепипеда, найти его длину, ширину, высоту, диагональ, объем